Home
Class 8
MATHS
Simplify : 3x - [4x - bar(3x -5y) - 3{...

Simplify :
`3x - [4x - bar(3x -5y) - 3{2x - (3x - bar(2x - 3y))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 3x - [4x - \overline{(3x - 5y)} - 3\{2x - (3x - \overline{(2x - 3y)})\}] \), we will follow the order of operations and carefully handle the brackets and bars. ### Step-by-step Solution: 1. **Start with the innermost expression:** \[ 3x - \overline{(2x - 3y)} \] The bar indicates that we need to negate the expression inside: \[ \overline{(2x - 3y)} = -2x + 3y \] Therefore, \[ 3x - \overline{(2x - 3y)} = 3x + 2x - 3y = 5x - 3y \] 2. **Substituting back into the expression:** Now we replace \( \overline{(2x - 3y)} \) in the original expression: \[ 3x - [4x - \overline{(3x - 5y)} - 3\{2x - (5x - 3y)\}] \] 3. **Next, simplify \( \overline{(3x - 5y)} \):** \[ \overline{(3x - 5y)} = -3x + 5y \] Substitute this back: \[ 3x - [4x - (-3x + 5y) - 3\{2x - (5x - 3y)\}] \] 4. **Now simplify the expression inside the brackets:** \[ 4x - (-3x + 5y) = 4x + 3x - 5y = 7x - 5y \] 5. **Now simplify \( 2x - (5x - 3y) \):** \[ 2x - (5x - 3y) = 2x - 5x + 3y = -3x + 3y \] 6. **Now substitute this back into the expression:** \[ 3x - [7x - 5y - 3(-3x + 3y)] \] Distributing the -3: \[ 3x - [7x - 5y + 9x - 9y] \] Combine like terms: \[ 3x - [16x - 14y] \] 7. **Now simplify the outer expression:** \[ 3x - 16x + 14y = -13x + 14y \] ### Final Simplified Expression: \[ \boxed{-13x + 14y} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : 3x - [3x - {3x - (3x - bar(3x - y))}]

Simplify : x - y - {x-y - (x+y)-bar(x-y)}

Simplify x - [ y - { z - (2x - bar(y+z)) }]

Simplify 3x(x-y) -y (x+y)

Simplify: [5-3x+2y-(2x-y)]-(3x-7y+9)

Simplify: (3x+2y)(4x+3y)-\ (2x-y)(7x-3y)

Simplify: (3x+2)(2x+3)-(4x-3)(2x-1)

Simplify the following (2x - 3y ) (4x - 5y)

Simplify : p^(2)x - 2{px - 3x(x^(2) - bar(3a - x^(2)))}

Factorise : 4x(3x - 2y) - 2y (3x-2y)