Home
Class 8
MATHS
Simplify : x^(5) div (x^(2) xx y^(2)) ...

Simplify :
`x^(5) div (x^(2) xx y^(2)) xx y^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{x^5}{x^2 \cdot y^2 \cdot y^3} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{x^5}{x^2 \cdot y^2 \cdot y^3} \] This can be rewritten as: \[ \frac{x^5}{x^2 \cdot y^{2+3}} = \frac{x^5}{x^2 \cdot y^5} \] ### Step 2: Simplify the expression Now we can simplify the expression by dividing the powers of \( x \): \[ \frac{x^5}{x^2} = x^{5-2} = x^3 \] So now we have: \[ \frac{x^3}{y^5} \] ### Step 3: Write the final simplified expression Thus, the simplified expression is: \[ \frac{x^3}{y^5} \] ### Final Answer: \[ \frac{x^3}{y^5} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : x^(5) div x^(7) xx x^(4)

Simplify : a^(5) div a^(3) + 3a xx 2a

Simplify : b. (5)/(9) div ((3)/(10) xx (5)/(12))

Simplify: x^2(x+2y)(x-3y)

Simplify 27x^(3)y^(2)z div (-6xy^(3)z^(4))

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Simplify : (y^(3) - 5y^(2)) div y xx (y-1)

Simplify: x^2(x-y)+y^2(x+2y)

Simplify : (2x-5y)^3-(2x+5y)^3