Home
Class 8
MATHS
Simplify : (x^(5) div x^(2)) xx y^(2) ...

Simplify :
`(x^(5) div x^(2)) xx y^(2) xx y^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `(x^(5) div x^(2)) xx y^(2) xx y^(3)`, we can follow these steps: ### Step 1: Rewrite the Division We start with the expression: \[ \frac{x^5}{x^2} \cdot y^2 \cdot y^3 \] ### Step 2: Apply the Quotient Rule for Exponents Using the quotient rule for exponents, which states that \(\frac{a^m}{a^n} = a^{m-n}\), we can simplify \(\frac{x^5}{x^2}\): \[ x^{5-2} = x^3 \] ### Step 3: Combine the y Terms Next, we combine the \(y\) terms. We use the product rule for exponents, which states that \(a^m \cdot a^n = a^{m+n}\): \[ y^2 \cdot y^3 = y^{2+3} = y^5 \] ### Step 4: Combine the Results Now we can combine the results from Step 2 and Step 3: \[ x^3 \cdot y^5 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{x^3 y^5} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : x^(5) div x^(7) xx x^(4)

Simplify : a^(5) div a^(3) + 3a xx 2a

Simplify : (y^(3) - 5y^(2)) div y xx (y-1)

Simplify : b. (5)/(9) div ((3)/(10) xx (5)/(12))

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Simplify : (2x-5y)^3-(2x+5y)^3

Simplify that: (2x^(-2)y^3)^3

Simplify : c. (3)/(5) of ((1)/(15) xx 3 (2)/(5))

Simplify (4x^(2)y^(2)z - 6xy^(3)z +10 x^(3)yz^(2)) div (-2xyz)

Simplify: x^2(x-y)+y^2(x+2y)