Home
Class 8
MATHS
Simplify : (y^(3) - 5y^(2)) div y xx (...

Simplify :
`(y^(3) - 5y^(2)) div y xx (y-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((y^3 - 5y^2) \div (y \cdot (y - 1))\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{y^3 - 5y^2}{y \cdot (y - 1)} \] ### Step 2: Factor the numerator The numerator \(y^3 - 5y^2\) can be factored by taking out the common factor \(y^2\): \[ y^2(y - 5) \] So, we can rewrite the expression as: \[ \frac{y^2(y - 5)}{y \cdot (y - 1)} \] ### Step 3: Cancel common factors Now, we can cancel the common factor \(y\) from the numerator and the denominator: \[ \frac{y^2}{y} \cdot \frac{(y - 5)}{(y - 1)} = y \cdot \frac{(y - 5)}{(y - 1)} \] ### Step 4: Multiply the remaining terms Now, we multiply \(y\) with the remaining fraction: \[ y \cdot \frac{(y - 5)}{(y - 1)} = \frac{y(y - 5)}{(y - 1)} \] ### Step 5: Final expression The simplified expression is: \[ \frac{y(y - 5)}{(y - 1)} \] ### Summary of the solution Thus, the simplified form of the given expression \((y^3 - 5y^2) \div (y \cdot (y - 1))\) is: \[ \frac{y(y - 5)}{(y - 1)} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : (x^(5) div x^(2)) xx y^(2) xx y^(3)

Simplify : (4x - 5y)(5x - 4y)

Simplify : x^(5) div (x^(2) xx y^(2)) xx y^(3)

Simplify (2y -1) (4y - 3)

Simplify: (4-y)-2(2y - 3)

Simplify: x^2(x-y)+y^2(x+2y)

Simplify 3x(x-y) -y (x+y)

Simplify : (2x-5y)^3-(2x+5y)^3

Simplify (2y - 1) (3-4y)

Simplify 3y^(3) - [ 7y^(2) -{ - 2y^(3) -(2- 4y^(2))+6y -y^(2)}]