Home
Class 8
MATHS
Simplify : 7x + 4{x^(2) div(5x div 10)...

Simplify :
`7x + 4{x^(2) div(5x div 10)} - 3{2 - x^(3) div (3x^(2) div x)}`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(7x + 4\left(\frac{x^2}{\frac{5x}{10}}\right) - 3\left(2 - \frac{x^3}{\frac{3x^2}{x}}\right)\), we will follow the steps below: ### Step 1: Simplify the division inside the brackets First, we simplify the expression inside the brackets. 1. **For the first part**: \[ \frac{5x}{10} = \frac{1}{2}x \] So, \[ \frac{x^2}{\frac{5x}{10}} = \frac{x^2}{\frac{1}{2}x} = x^2 \cdot \frac{2}{x} = 2x \] 2. **For the second part**: \[ \frac{3x^2}{x} = 3x \] Hence, \[ \frac{x^3}{\frac{3x^2}{x}} = \frac{x^3}{3x} = \frac{x^2}{3} \] ### Step 2: Substitute back into the expression Now we can rewrite the original expression with the simplified parts: \[ 7x + 4(2x) - 3\left(2 - \frac{x^2}{3}\right) \] ### Step 3: Distribute the constants Now distribute the constants: 1. \(4(2x) = 8x\) 2. Distributing \(-3\): \[ -3(2) + 3\left(\frac{x^2}{3}\right) = -6 + x^2 \] ### Step 4: Combine all parts Now combine all the parts together: \[ 7x + 8x - 6 + x^2 \] ### Step 5: Combine like terms Combine the like terms: \[ (7x + 8x) + x^2 - 6 = 15x + x^2 - 6 \] ### Final Answer Thus, the simplified expression is: \[ x^2 + 15x - 6 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : (7x - 8)(3x + 2)

Simplify : x^(5) div x^(7) xx x^(4)

Simplify 3 4/7 div5

Simplify : (-6)-{(-28)div(-7)}

Simplify : (4.5xx2+6.6)div0.03

Simplify : x^(5) div (x^(2) xx y^(2)) xx y^(3)

Simplify 17/16 div 3/4

Simplify : (0.08)^(2)div0.4

Simplify 15 div3/17

Simplify : (x^(5) div x^(2)) xx y^(2) xx y^(3)