Home
Class 12
MATHS
If a ,b ,c in Ra n da b c<0 , then equa...

If `a ,b ,c in Ra n da b c<0` , then equation `b c x^2+2b+c-a)x+a=0h a s` both positive roots both negative roots real roots one positive and one negative root

A

both positive roots

B

both negative roots

C

real roots

D

one positive and one negative root.

Text Solution

Verified by Experts

The correct Answer is:
C, D

Given `abc lt 0`
product of roots of the given equation `= (a)/(bc) xx (bc)/(bc)`
`= (abc)/((bc)^(2)) lt 0`
`:'` product of roots is `lt 0`
`:.` one roots is positive and one is negative real roots
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If a , b ,c in Ra n da(a+b)+b(b+c)+c(c+a)=0 then a. a=b=c=0 b. a+b+c+=0 c. (a-b)^2+(b-c)^2+(c-a)^2=0 d. a^3+b^3+c^3+3a b c=0

If a ,b ,c in R such that a+b+c=0a n da!=c , then prove that the roots of (b+c-a)x^2+(c+a-b)x+(a+b-c)=0 are real and distinct.

If a ,b ,c in R such that a+b+c=0a n da!=c , then prove that the roots of (b+c-a)x^2+(c+a-b)x+(a+b-c)=0 are real and distinct.

If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is always

If a ,b ,c ,da n dp are distinct real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0, then prove that a ,b ,c , d are in G.P.

If x in R ,a n da ,b ,c are in ascending or descending order of magnitude, show that (x-a)(x-c)//(x-b)(w h e r ex!=b) can assume any real value.

If x^2+3x+5=0a n da x^2+b x+c=0 have common root/roots and a ,b ,c in N , then find the minimum value of a+b+ c dot

If a+b+c=6\ a n d\ a b+b c+c a=11 , find the value of a^3+b^3+c^3-3a b c

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If a ,b ,c,d are in G.P. prove that (a^n+b^n),(b^n+c^n),(c^n+d^n) are in G.P.