Home
Class 12
MATHS
(a)/(b) = (c)/(d) = (e)/(f) = k(a, b, c,...

`(a)/(b) = (c)/(d) = (e)/(f) = k(a, b, c, d, e, f gt 0)` then (A) `k = (a + c +e)/(b + d + f)` (B) `k = (a^(2) + c^(2) +e^(2))/(b^(2) + d^(2) + f^(2))` (C) `k = (c^(2)e^(2))/(d^(2)f^(2))` (D) `k = ((ace)/(bdf))^((1)/(3))`

A

`k = (a + c +e)/(b + d + f)`

B

`k = (a^(2) + c^(2) +e^(2))/(b^(2) + d^(2) + f^(2))`

C

`k = (c^(2)e^(2))/(d^(2)f^(2))`

D

`k = ((ace)/(bdf))^((1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratios: \[ \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k \] From this, we can express \(a\), \(c\), and \(e\) in terms of \(k\), \(b\), \(d\), and \(f\): 1. **Express \(a\), \(c\), and \(e\) in terms of \(k\)**: - \(a = k \cdot b\) - \(c = k \cdot d\) - \(e = k \cdot f\) Now, we will check each option one by one. ### Option A: \[ k = \frac{a + c + e}{b + d + f} \] Substituting the values of \(a\), \(c\), and \(e\): \[ k = \frac{k \cdot b + k \cdot d + k \cdot f}{b + d + f} \] Factoring \(k\) out from the numerator: \[ k = \frac{k(b + d + f)}{b + d + f} \] Since \(b + d + f \neq 0\) (as \(b, d, f > 0\)), we can cancel \(b + d + f\): \[ k = k \] This is true, so **Option A is correct**. ### Option B: \[ k = \frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2} \] Substituting the values: \[ k = \frac{(k \cdot b)^2 + (k \cdot d)^2 + (k \cdot f)^2}{b^2 + d^2 + f^2} \] This simplifies to: \[ k = \frac{k^2(b^2 + d^2 + f^2)}{b^2 + d^2 + f^2} \] Again, since \(b^2 + d^2 + f^2 \neq 0\): \[ k = k^2 \] This implies \(k^2 - k = 0\) or \(k(k - 1) = 0\). Since \(k > 0\), this means \(k \neq 1\) is not guaranteed. Thus, **Option B is incorrect**. ### Option C: \[ k = \frac{c^2 e^2}{d^2 f^2} \] Substituting the values: \[ k = \frac{(k \cdot d)^2 (k \cdot f)^2}{d^2 f^2} \] This simplifies to: \[ k = \frac{k^2 d^2 k^2 f^2}{d^2 f^2} = \frac{k^4 d^2 f^2}{d^2 f^2} \] Again, since \(d^2 f^2 \neq 0\): \[ k = k^4 \] This implies \(k^4 - k = 0\) or \(k(k^3 - 1) = 0\). Since \(k > 0\), this means \(k \neq 1\) is not guaranteed. Thus, **Option C is incorrect**. ### Option D: \[ k = \left(\frac{a c e}{b d f}\right)^{\frac{1}{3}} \] Substituting the values: \[ k = \left(\frac{(k \cdot b)(k \cdot d)(k \cdot f)}{b d f}\right)^{\frac{1}{3}} \] This simplifies to: \[ k = \left(\frac{k^3 b d f}{b d f}\right)^{\frac{1}{3}} = \left(k^3\right)^{\frac{1}{3}} = k \] This is true, so **Option D is correct**. ### Conclusion: The correct options are **A** and **D**. ---
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d,e, f are A. M's between 2 and 12 , then find a + b + c +d + e +f.

If (a)/(2b) = (c )/(d) = (e )/(3f) , then the value of (2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(32b^(6)+12b^(2)d^(2)-405f^(5)) is

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

If a/b=c/d=e/f, then show that (a^(3)b+2c^(2)e-3ae^(2)f)/(b^(4)+2d^(2)f-3bf^(3))=(ace)/(bdf) (wherever defined)

If x(t) is a solution of ((1+t)dy)/(dx)-t y=1 and y(0)=-1 then y(1) is (a) ( b ) (c)-( d )1/( e )2( f ) (g) (h) (i) (b) ( j ) (k) e+( l )1/( m )2( n ) (o) (p) (q) (c) ( d ) (e) e-( f )1/( g )2( h ) (i) (j) (k) (d) ( l ) (m) (n)1/( o )2( p ) (q) (r) (s)

If real numbers a, b, c, d, e satisfy a+1=b + 2 = c+ 3 = d + 4 = e + 5 = a + b + c + d + e + 3 then find the value of a^2 + b^2 + c^2 + d^2 + e^2

The A D ,B Ea n dC F are the medians of a c A B C , then (A D^2+B E^2+C F^2):(B C^2+C A^2+A B^2) is equal to

In A B C , A D and B E are altitudes. Prove that (a r( D E C))/(a r( A B C))=(D C^2)/(A C^2)

If f(1)=2, f\'(x)=f(x) and h(x)=fof(x) then h'\(1) is equal to (A) 4e (B) 2e^2 (C) 4e^2 (D) e^2

If s e ctheta+t a ntheta=k ,\ costheta= a. (k^2+1)/(2k) b. (2k)/(k^2+1) c. k/(k^2+1) d. k/(k^2-1)