Home
Class 12
MATHS
(x - 1)^(2)/(x - 2)^(2) ge 1 then subset...

`(x - 1)^(2)/(x - 2)^(2) ge 1` then subset in solution set may be

A

`(-oo, (3)/(2)]`

B

`[(3)/(2), 2)`

C

`[2 , oo)`

D

`(3, oo)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`(x - 1)^(2)/(x - 2)^(2)- 1 ge 0`

`((x - 1)^(2) - (x - 2)^(2))/(x - 2)^(2)ge 0`
`((2x - 3))/(x - 2)^(2) ge 0`
`[(3)/(2), 2)cup(2, oo)`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

(4x)/(x^(2) +3)ge 1.

If 1/(x-1) ge 2 , then the solution set is

If ((x^(2)-1)(x+2)(x+1)^(2))/((x-2))lt0 , then complete solution set of inequation is

If |sin^2 x + 17 - x ^2| = |16 - x^2| + 2sin^2 x + cos^2 x then subsets of solution are

If 3^(x)+2^(2x) ge 5^(x) , then the solution set for x, is

Solve: (-1)/(|x|-2) ge 1 .

|x^(2)-4x+4|ge 1

If (2x+1)/(x-2) le 1 , x in R , then the solution set is (i) ( -oo,1/2) (ii) (- oo,-1/2] (iii) [-3,2] (iv) [-3,2)

Let f(x)=x^(2)-x+1, AA x ge (1)/(2) , then the solution of the equation f(x)=f^(-1)(x) is

The true set of valued of 'K' for which sin ^(-1)((1)/(1+sin ^(2)x)) = (kpi)/(6) may have a solution is :