Home
Class 12
MATHS
If a,b,c in R - {0} and a^(2) = bc and a...

If `a,b,c in R - {0}` and `a^(2) = bc` and `a + b +c = abc` then the least possible value of `a^(2)` is

Text Solution

Verified by Experts

The correct Answer is:
`3`

Given `bc = a^(2) …(i)`
`b + c = abc - a`
`b + c = a^(3) - a…..(ii)`
`:.` equation `x^(2) - (b + c)x + bc = 0overset(b)underset(c)(lt)`
`x^(2) - (a^(3) - a) x + a^(2) = 0` has two roots `b` and `c`.
`b` and `c` are equal so
`D ge 0`
`(a^(3) - a)^(2) - 4a^(2) ge 0`
`a^(2)(a^(4) -2a^(2) - 3) ge 0`
`a^(2)(a^(2) - 3)(a^(2) + 1) ge 0`
`a^(2) - 3 ge 0`
`:. a^(2) ge 3`
`:. (a^(2))_(min) = 3`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a,b,c are three distinct numbers in G.P., b,c,a are in A.P and a,bc, abc, in H.P then the possible value of b is

If a,b, c, lambda in N , then the least possible value of |(a^(2)+lambda, ab,ac),(ba,b^(2)+lambda,bc),(ca, cb, c^(2)+lambda)| is

Statement-1: If a, b, c in R and 2a + 3b + 6c = 0 , then the equation ax^(2) + bx + c = 0 has at least one real root in (0, 1). Statement-2: If f(x) is a polynomial which assumes both positive and negative values, then it has at least one real root.

" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}| where a,b,c are distinct positive reals then the possible values of abc is // are

If in the triangle ABC, "tan"(A)/(2), "tan"(B)/(2) and "tan"(C )/(2) are in harmonic progression then the least value of "cot"^(2)(B)/(2) is equal to :

If a,b in R and a ltb, then prove that there exists at least one real number c in(a,b)"such that"(b^(2)+a^(2))/(4c^(2))=(c)/(a+b).

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

When a=3 , b=0 , c=-2 , then find the value of : ab+2bc+3ca+4abc.