Home
Class 12
MATHS
If x = 13 + 2sqrt(42), then sqrt(x) + (1...

If `x = 13 + 2sqrt(42)`, then `sqrt(x) + (1)/(sqrt(x))` is equal to `asqrt(b)` then find the value of `b - a` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given value of \( x \): \[ x = 13 + 2\sqrt{42} \] We need to find \( \sqrt{x} + \frac{1}{\sqrt{x}} \) and express it in the form \( a\sqrt{b} \). ### Step 1: Express \( x \) as a perfect square We can rewrite \( x \) in a form that resembles a perfect square. We notice that: \[ x = 13 + 2\sqrt{42} \] We can express \( 13 \) as \( 6 + 7 \) to facilitate completing the square: \[ x = (6 + 7) + 2\sqrt{42} \] Now, we can use the identity \( (a + b)^2 = a^2 + b^2 + 2ab \). We can set \( a = \sqrt{6} \) and \( b = \sqrt{7} \): \[ x = (\sqrt{6} + \sqrt{7})^2 \] ### Step 2: Calculate \( \sqrt{x} \) Now that we have expressed \( x \) as a perfect square, we can find \( \sqrt{x} \): \[ \sqrt{x} = \sqrt{(\sqrt{6} + \sqrt{7})^2} = \sqrt{6} + \sqrt{7} \] ### Step 3: Calculate \( \frac{1}{\sqrt{x}} \) Next, we need to find \( \frac{1}{\sqrt{x}} \): \[ \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{6} + \sqrt{7}} \] To rationalize the denominator, we multiply the numerator and denominator by \( \sqrt{7} - \sqrt{6} \): \[ \frac{1}{\sqrt{6} + \sqrt{7}} \cdot \frac{\sqrt{7} - \sqrt{6}}{\sqrt{7} - \sqrt{6}} = \frac{\sqrt{7} - \sqrt{6}}{(\sqrt{7})^2 - (\sqrt{6})^2} = \frac{\sqrt{7} - \sqrt{6}}{7 - 6} = \sqrt{7} - \sqrt{6} \] ### Step 4: Combine \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \) Now we can combine \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \): \[ \sqrt{x} + \frac{1}{\sqrt{x}} = (\sqrt{6} + \sqrt{7}) + (\sqrt{7} - \sqrt{6}) = 2\sqrt{7} \] ### Step 5: Identify \( a \) and \( b \) We have expressed \( \sqrt{x} + \frac{1}{\sqrt{x}} \) as: \[ 2\sqrt{7} = a\sqrt{b} \] From this, we can identify \( a = 2 \) and \( b = 7 \). ### Step 6: Calculate \( b - a \) Finally, we need to find \( b - a \): \[ b - a = 7 - 2 = 5 \] Thus, the final answer is: \[ \boxed{5} \]

To solve the problem, we start with the given value of \( x \): \[ x = 13 + 2\sqrt{42} \] We need to find \( \sqrt{x} + \frac{1}{\sqrt{x}} \) and express it in the form \( a\sqrt{b} \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(2)-1 then find the value of ((1)/(x)-x)^(3) :-

If x=1-sqrt(2) , find the value of (x-1/x)^3

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int_(a)^(b) ( sqrt(x))/( sqrt(x) + sqrt(a+b-x))dx is equal to

(sqrt(x)-1)^(2)=8-sqrt(28) find the value of x

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x=1-sqrt(2), find the value of (x-1/x)^3

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)

If one root of sqrt(a-x) + sqrt(b+x) = sqrt(a) + sqrt(b) is 2012, then a possible value of (a, b) is: