Home
Class 12
MATHS
P(x)=(x-cos36^@)(x-cos84^@)(x-cos156^@) ...

P(x)=`(x-cos36^@)(x-cos84^@)(x-cos156^@)` then coefficient of `x^2` is

A

`0`

B

`1`

C

`-(1)/(2)`

D

`(sqrt(5) - 1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^2 \) in the polynomial \( P(x) = (x - \cos 36^\circ)(x - \cos 84^\circ)(x - \cos 156^\circ) \), we can follow these steps: ### Step 1: Identify the Roots The roots of the polynomial \( P(x) \) are: - \( \alpha = \cos 36^\circ \) - \( \beta = \cos 84^\circ \) - \( \gamma = \cos 156^\circ \) ### Step 2: Use Vieta's Formulas According to Vieta's formulas, for a cubic polynomial of the form \( ax^3 + bx^2 + cx + d \), the sum of the roots (which corresponds to the coefficient of \( x^2 \)) is given by: \[ \alpha + \beta + \gamma = -\frac{b}{a} \] Since \( a = 1 \) in our polynomial, we have: \[ \alpha + \beta + \gamma = -b \] Thus, to find the coefficient \( b \), we need to calculate \( \alpha + \beta + \gamma \). ### Step 3: Calculate \( \alpha + \beta + \gamma \) We will calculate: \[ \alpha + \beta + \gamma = \cos 36^\circ + \cos 84^\circ + \cos 156^\circ \] ### Step 4: Simplify Using Trigonometric Identities Using the cosine addition formulas: - \( \cos 84^\circ = \cos(90^\circ - 6^\circ) = \sin 6^\circ \) - \( \cos 156^\circ = \cos(180^\circ - 24^\circ) = -\cos 24^\circ \) Thus, we can express the sum as: \[ \cos 36^\circ + \sin 6^\circ - \cos 24^\circ \] ### Step 5: Use the Cosine Addition Formula We can also use the cosine addition formulas to combine these terms: \[ \cos 36^\circ + \cos 84^\circ + \cos 156^\circ = \cos 36^\circ + \cos(90^\circ - 6^\circ) - \cos 24^\circ \] This can be simplified further using known values or identities. ### Step 6: Evaluate the Sum After evaluating, we find: \[ \cos 36^\circ + \cos 84^\circ + \cos 156^\circ = 0 \] ### Step 7: Conclusion Since \( \alpha + \beta + \gamma = 0 \), we have: \[ -b = 0 \implies b = 0 \] Thus, the coefficient of \( x^2 \) in the polynomial \( P(x) \) is \( 0 \). ### Final Answer The coefficient of \( x^2 \) is \( 0 \). ---

To find the coefficient of \( x^2 \) in the polynomial \( P(x) = (x - \cos 36^\circ)(x - \cos 84^\circ)(x - \cos 156^\circ) \), we can follow these steps: ### Step 1: Identify the Roots The roots of the polynomial \( P(x) \) are: - \( \alpha = \cos 36^\circ \) - \( \beta = \cos 84^\circ \) - \( \gamma = \cos 156^\circ \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

int(cos7x-cos8x)/(cos2x-cos3x)dx

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....

If e^(cos x) -e^(-cos x) = 4 , then the value of cos x, is

The value of cos12^@+cos84^@+cos156^@+cos132^@ is

If cos(pi/4-x)cos2x+sinxsin2xsecx=cos x sin 2x sec x+cos(pi/4+x)cos 2x then possible value of sec x is

Prove that cos12^(@)+cos84^(@)+cos132^(@)+cos156^(@)=-1/2

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Let P (x ) be a quadratic polynomial with real coefficients such that...

    Text Solution

    |

  2. Let P (x ) be a quadratic polynomial with real coefficients such that...

    Text Solution

    |

  3. P(x)=(x-cos36^@)(x-cos84^@)(x-cos156^@) then coefficient of x^2 is

    Text Solution

    |

  4. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  5. If m, n, r, in N then .^(m)C(0).^(n)C(r) + .^(m)C(1).^(n)C(r-1)+"…….."...

    Text Solution

    |

  6. If m, n, r, in N then .^(m)C(0).^(n)C(r) + .^(m)C(1).^(n)C(r-1)+"…….."...

    Text Solution

    |

  7. log(m)N = alpha + beta where alpha in 1, beta in [0, 1] If m and alp...

    Text Solution

    |

  8. If M & alpha are twin prime &alpha+M=7 then the greatest integral valu...

    Text Solution

    |

  9. Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of v...

    Text Solution

    |

  10. Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of v...

    Text Solution

    |

  11. The sum (2^(1))/(4^(1) - 1) + (2^(2))/(4^(2) - 1) + (2^(4))/(4^(4) - 1...

    Text Solution

    |

  12. Least positive inegral value of x satisfying |4x + 3| + |3x - 4| = |...

    Text Solution

    |

  13. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  14. Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(...

    Text Solution

    |

  15. If a, b, c are non-zero than minimumm value of expression (((a^(4)+3...

    Text Solution

    |

  16. Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = ...

    Text Solution

    |

  17. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  18. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  19. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  20. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |