Home
Class 12
MATHS
If m, n, r, in N then .^(m)C(0).^(n)C(r)...

If `m, n, r, in N` then `.^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0)`
`=` coefficient of `x^(r)` in `(1+x)^(m)(1+x)^(n)`
`=` coefficient of `x^(f)` in `(1+x)^(m+n)`
The value of r for which `S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r)` is maximum can not be

A

`7`

B

`8`

C

`10`

D

`15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and find the value of \( r \) for which the sum \( S \) is maximum. Let's break it down step by step. ### Step 1: Understand the Expression The expression we need to analyze is: \[ S = \binom{20}{r} \cdot \binom{10}{0} + \binom{20}{r-1} \cdot \binom{10}{1} + \ldots + \binom{20}{0} \cdot \binom{10}{r} \] This expression represents the sum of products of binomial coefficients. ### Step 2: Relate to Binomial Expansion From the properties of binomial coefficients, we know that: \[ S = \text{coefficient of } x^r \text{ in } (1+x)^{20} \cdot (1+x)^{10} = \text{coefficient of } x^r \text{ in } (1+x)^{30} \] This means we can express \( S \) as: \[ S = \binom{30}{r} \] where \( \binom{30}{r} \) is the binomial coefficient representing the coefficient of \( x^r \) in the expansion of \( (1+x)^{30} \). ### Step 3: Find Maximum Value The binomial coefficient \( \binom{30}{r} \) reaches its maximum value when \( r \) is around \( \frac{30}{2} = 15 \). This is due to the symmetry and properties of binomial coefficients. ### Step 4: Determine Values of \( r \) Since \( r \) must be a natural number, we can have \( r = 15 \) as the maximum point. The values of \( r \) that will yield maximum \( S \) are \( 14, 15, \) and \( 16 \). ### Step 5: Identify the Value of \( r \) That Cannot Be Maximum The question asks for the value of \( r \) for which \( S \) cannot be maximum. Since \( r \) can take values around 15 for maximum \( S \), any value outside the range of \( 14, 15, 16 \) cannot yield a maximum. Thus, the value of \( r \) that cannot be maximum is any integer not equal to \( 14, 15, \) or \( 16 \). For instance, \( r = 0 \) or \( r = 30 \) would not give maximum \( S \). ### Final Answer The value of \( r \) for which \( S \) is maximum cannot be: \[ \text{Any value not in } \{14, 15, 16\}, \text{ for example, } r = 0 \text{ or } r = 30. \]

To solve the problem, we need to analyze the expression given and find the value of \( r \) for which the sum \( S \) is maximum. Let's break it down step by step. ### Step 1: Understand the Expression The expression we need to analyze is: \[ S = \binom{20}{r} \cdot \binom{10}{0} + \binom{20}{r-1} \cdot \binom{10}{1} + \ldots + \binom{20}{0} \cdot \binom{10}{r} \] This expression represents the sum of products of binomial coefficients. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. P(x)=(x-cos36^@)(x-cos84^@)(x-cos156^@) then coefficient of x^2 is

    Text Solution

    |

  2. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  3. If m, n, r, in N then .^(m)C(0).^(n)C(r) + .^(m)C(1).^(n)C(r-1)+"…….."...

    Text Solution

    |

  4. If m, n, r, in N then .^(m)C(0).^(n)C(r) + .^(m)C(1).^(n)C(r-1)+"…….."...

    Text Solution

    |

  5. log(m)N = alpha + beta where alpha in 1, beta in [0, 1] If m and alp...

    Text Solution

    |

  6. If M & alpha are twin prime &alpha+M=7 then the greatest integral valu...

    Text Solution

    |

  7. Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of v...

    Text Solution

    |

  8. Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of v...

    Text Solution

    |

  9. The sum (2^(1))/(4^(1) - 1) + (2^(2))/(4^(2) - 1) + (2^(4))/(4^(4) - 1...

    Text Solution

    |

  10. Least positive inegral value of x satisfying |4x + 3| + |3x - 4| = |...

    Text Solution

    |

  11. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  12. Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(...

    Text Solution

    |

  13. If a, b, c are non-zero than minimumm value of expression (((a^(4)+3...

    Text Solution

    |

  14. Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = ...

    Text Solution

    |

  15. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  16. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  17. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  18. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |

  19. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  20. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |