Home
Class 12
MATHS
Least positive inegral value of x satisf...

Least positive inegral value of `x` satisfying `|4x + 3| + |3x - 4| = |7x - 1|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |4x + 3| + |3x - 4| = |7x - 1| \), we will analyze the absolute value expressions by considering different cases based on the critical points where each expression inside the absolute values changes sign. ### Step 1: Identify critical points The expressions inside the absolute values change sign at: - \( 4x + 3 = 0 \) → \( x = -\frac{3}{4} \) - \( 3x - 4 = 0 \) → \( x = \frac{4}{3} \) - \( 7x - 1 = 0 \) → \( x = \frac{1}{7} \) The critical points are \( x = -\frac{3}{4}, \frac{1}{7}, \frac{4}{3} \). We will analyze the equation in the intervals defined by these points. ### Step 2: Analyze intervals The intervals to consider are: 1. \( x < -\frac{3}{4} \) 2. \( -\frac{3}{4} \leq x < \frac{1}{7} \) 3. \( \frac{1}{7} \leq x < \frac{4}{3} \) 4. \( x \geq \frac{4}{3} \) #### Case 1: \( x < -\frac{3}{4} \) In this interval: - \( |4x + 3| = -(4x + 3) = -4x - 3 \) - \( |3x - 4| = -(3x - 4) = -3x + 4 \) - \( |7x - 1| = -(7x - 1) = -7x + 1 \) Substituting these into the equation: \[ -4x - 3 - 3x + 4 = -7x + 1 \] Simplifying: \[ -7x + 1 = -7x + 1 \] This is true for all \( x < -\frac{3}{4} \). #### Case 2: \( -\frac{3}{4} \leq x < \frac{1}{7} \) In this interval: - \( |4x + 3| = 4x + 3 \) - \( |3x - 4| = -(3x - 4) = -3x + 4 \) - \( |7x - 1| = -(7x - 1) = -7x + 1 \) Substituting these into the equation: \[ 4x + 3 - 3x + 4 = -7x + 1 \] Simplifying: \[ x + 7 = -7x + 1 \] \[ 8x = -6 \quad \Rightarrow \quad x = -\frac{3}{4} \] This is valid in the interval. #### Case 3: \( \frac{1}{7} \leq x < \frac{4}{3} \) In this interval: - \( |4x + 3| = 4x + 3 \) - \( |3x - 4| = -(3x - 4) = -3x + 4 \) - \( |7x - 1| = 7x - 1 \) Substituting these into the equation: \[ 4x + 3 - 3x + 4 = 7x - 1 \] Simplifying: \[ x + 7 = 7x - 1 \] \[ 6 = 6x \quad \Rightarrow \quad x = 1 \] This is valid in the interval. #### Case 4: \( x \geq \frac{4}{3} \) In this interval: - \( |4x + 3| = 4x + 3 \) - \( |3x - 4| = 3x - 4 \) - \( |7x - 1| = 7x - 1 \) Substituting these into the equation: \[ 4x + 3 + 3x - 4 = 7x - 1 \] Simplifying: \[ 7x - 1 = 7x - 1 \] This is true for all \( x \geq \frac{4}{3} \). ### Step 3: Find least positive integral value The solutions we found are: - From Case 1: All \( x < -\frac{3}{4} \) - From Case 2: \( x = -\frac{3}{4} \) - From Case 3: \( x = 1 \) - From Case 4: All \( x \geq \frac{4}{3} \) The least positive integral value satisfying the equation is \( x = 1 \). ### Final Answer The least positive integral value of \( x \) satisfying the equation is \( \boxed{1} \).

To solve the equation \( |4x + 3| + |3x - 4| = |7x - 1| \), we will analyze the absolute value expressions by considering different cases based on the critical points where each expression inside the absolute values changes sign. ### Step 1: Identify critical points The expressions inside the absolute values change sign at: - \( 4x + 3 = 0 \) → \( x = -\frac{3}{4} \) - \( 3x - 4 = 0 \) → \( x = \frac{4}{3} \) - \( 7x - 1 = 0 \) → \( x = \frac{1}{7} \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The least positive value of x satisfying the equation |x+1|-|x|+3|x-1|+2|x-2|= x+2 is

the least positive value of x satisfying ( sin^(2) 2x + 4 sin^(4) x - 4 sin^(2) x cos^(2) x )/ 4 = 1/9 is

The least positive integral value of 'x' satisfying (e^x-2)(sin(x+pi/4))(x-log_e2)(sinx-cosx)<0

Find the set of values of x, satisfying 7x + 3 ge 3x - 5 and (x)/(4) - 5 le (5)/(4) - x , where x in N .

The number of integral value(s) of x satisfying the equation |x^4 .3^(|x-2|). 5^(x-1)|=-x^4 .3^(|x-2|). 5^(x-1) is

The least integer value of x , which satisfies |x|+|(x)/(x-1)|=(x^(2))/(|x-1|) is

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

Find the least positive value of x satisfying (sin^2 2x+4sin^4x-4sin^2xcos^2x)/(4-sin^2 2x- 4 sin^2x)=1/9

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of v...

    Text Solution

    |

  2. The sum (2^(1))/(4^(1) - 1) + (2^(2))/(4^(2) - 1) + (2^(4))/(4^(4) - 1...

    Text Solution

    |

  3. Least positive inegral value of x satisfying |4x + 3| + |3x - 4| = |...

    Text Solution

    |

  4. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  5. Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(...

    Text Solution

    |

  6. If a, b, c are non-zero than minimumm value of expression (((a^(4)+3...

    Text Solution

    |

  7. Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = ...

    Text Solution

    |

  8. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  9. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  10. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  11. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |

  12. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  13. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |

  14. If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S(10) is...

    Text Solution

    |

  15. If p, q, r each are positive rational number such tlaht p gt q gt r an...

    Text Solution

    |

  16. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  17. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  18. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  19. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  20. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |