Home
Class 12
MATHS
If a, b, c are non-zero than minimumm va...

If `a, b, c` are non-zero than minimumm value of expression
`(((a^(4)+3a^(2)+1)(b^(4)+5b^(2)+1)(c^(4)+7c^(2)+1))/(a^(2)b^(2)c^(2)))` equals `pqr` find `p + q+ r`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \[ \frac{(a^4 + 3a^2 + 1)(b^4 + 5b^2 + 1)(c^4 + 7c^2 + 1)}{a^2b^2c^2}, \] we will analyze each factor in the numerator separately. ### Step 1: Analyze the first term \( a^4 + 3a^2 + 1 \) We can rewrite this expression in terms of \( x = a^2 \): \[ a^4 + 3a^2 + 1 = x^2 + 3x + 1. \] To find the minimum value of this quadratic expression, we can use the vertex formula \( x = -\frac{b}{2a} \): \[ x = -\frac{3}{2 \cdot 1} = -\frac{3}{2}. \] However, since \( a \) is non-zero, \( a^2 \) (or \( x \)) must be positive. Thus, we evaluate the expression at \( x = 1 \): \[ 1^2 + 3 \cdot 1 + 1 = 1 + 3 + 1 = 5. \] ### Step 2: Analyze the second term \( b^4 + 5b^2 + 1 \) Similarly, we set \( y = b^2 \): \[ b^4 + 5b^2 + 1 = y^2 + 5y + 1. \] Using the vertex formula again: \[ y = -\frac{5}{2 \cdot 1} = -\frac{5}{2}. \] Again, since \( b \) is non-zero, we evaluate at \( y = 1 \): \[ 1^2 + 5 \cdot 1 + 1 = 1 + 5 + 1 = 7. \] ### Step 3: Analyze the third term \( c^4 + 7c^2 + 1 \) Let \( z = c^2 \): \[ c^4 + 7c^2 + 1 = z^2 + 7z + 1. \] Using the vertex formula: \[ z = -\frac{7}{2 \cdot 1} = -\frac{7}{2}. \] Evaluating at \( z = 1 \): \[ 1^2 + 7 \cdot 1 + 1 = 1 + 7 + 1 = 9. \] ### Step 4: Combine the results Now we can combine the minimum values of each term: \[ \text{Minimum value} = \frac{(5)(7)(9)}{(1)(1)(1)} = 5 \cdot 7 \cdot 9. \] ### Step 5: Calculate \( pqr \) Let \( p = 5 \), \( q = 7 \), and \( r = 9 \). Thus: \[ pqr = 5 \cdot 7 \cdot 9. \] ### Step 6: Find \( p + q + r \) Now, we calculate: \[ p + q + r = 5 + 7 + 9 = 21. \] ### Final Answer The final answer is: \[ \boxed{21}. \]

To find the minimum value of the expression \[ \frac{(a^4 + 3a^2 + 1)(b^4 + 5b^2 + 1)(c^4 + 7c^2 + 1)}{a^2b^2c^2}, \] we will analyze each factor in the numerator separately. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

value of the expression (b-c)/(r_(1))+(c-a)/r_(2)+(a-b)/r_(3) is equal to

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

The product of the coefficients of terms in -4/3a b^2+1/4b c^2+3c a^2 is (a)1 (b) 1/2 (c) -1 (d) 3

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  2. Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(...

    Text Solution

    |

  3. If a, b, c are non-zero than minimumm value of expression (((a^(4)+3...

    Text Solution

    |

  4. Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = ...

    Text Solution

    |

  5. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  6. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  7. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  8. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |

  9. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  10. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |

  11. If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S(10) is...

    Text Solution

    |

  12. If p, q, r each are positive rational number such tlaht p gt q gt r an...

    Text Solution

    |

  13. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  14. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  15. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  16. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  17. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  18. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  19. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  20. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |