Home
Class 12
MATHS
Let L denots value of cos^(2)(alpha - be...

Let `L` denots value of `cos^(2)(alpha - beta)` if `sin2alpha + sin2beta = (1)/(2), cos2alpha + cos2beta = (sqrt(3))/(2)` and `M` denotes value of `(1)/(log_(xy)xyz) + (1)/(log_(yz)xyz) + (1)/(log_(zx)xyz)` then `16L^(2) + M^(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the value of \( L \) and then the value of \( M \), and finally compute \( 16L^2 + M^2 \). ### Step 1: Finding \( L = \cos^2(\alpha - \beta) \) We are given: 1. \( \sin 2\alpha + \sin 2\beta = \frac{1}{2} \) 2. \( \cos 2\alpha + \cos 2\beta = \frac{\sqrt{3}}{2} \) We can use the identity: \[ \sin^2 x + \cos^2 x = 1 \] Squaring both equations and adding them, we have: \[ (\sin 2\alpha + \sin 2\beta)^2 + (\cos 2\alpha + \cos 2\beta)^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 \] Calculating the right-hand side: \[ \left(\frac{1}{2}\right)^2 = \frac{1}{4}, \quad \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] Thus, \[ \frac{1}{4} + \frac{3}{4} = 1 \] Now, expanding the left-hand side: \[ (\sin 2\alpha)^2 + 2\sin 2\alpha \sin 2\beta + (\sin 2\beta)^2 + (\cos 2\alpha)^2 + 2\cos 2\alpha \cos 2\beta + (\cos 2\beta)^2 \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ 1 + 1 + 2(\sin 2\alpha \sin 2\beta + \cos 2\alpha \cos 2\beta) = 1 \] This simplifies to: \[ 2 + 2 \cos(2\alpha - 2\beta) = 1 \] Thus: \[ 2 \cos(2\alpha - 2\beta) = -1 \implies \cos(2\alpha - 2\beta) = -\frac{1}{2} \] This implies: \[ 2\alpha - 2\beta = \frac{2\pi}{3} + 2k\pi \quad \text{or} \quad 2\alpha - 2\beta = \frac{4\pi}{3} + 2k\pi \] Now, we can find \( \cos^2(\alpha - \beta) \): Using the double angle formula: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Setting \( \theta = \alpha - \beta \): \[ \cos(2(\alpha - \beta)) = -\frac{1}{2} \implies 2\cos^2(\alpha - \beta) - 1 = -\frac{1}{2} \] Solving for \( \cos^2(\alpha - \beta) \): \[ 2\cos^2(\alpha - \beta) = \frac{1}{2} \implies \cos^2(\alpha - \beta) = \frac{1}{4} \] Thus, \( L = \frac{1}{4} \). ### Step 2: Finding \( M \) We need to evaluate: \[ M = \frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)} \] Using the change of base formula: \[ \frac{1}{\log_a b} = \log_b a \] We can rewrite \( M \): \[ M = \log_{xyz}(xy) + \log_{xyz}(yz) + \log_{xyz}(zx) \] Using the property of logarithms: \[ M = \log_{xyz}(xy \cdot yz \cdot zx) = \log_{xyz}(x^2y^2z^2) = 2 \log_{xyz}(xyz) = 2 \] ### Step 3: Calculating \( 16L^2 + M^2 \) Now substituting the values of \( L \) and \( M \): \[ 16L^2 + M^2 = 16 \left(\frac{1}{4}\right)^2 + 2^2 \] Calculating \( L^2 \): \[ L^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16} \] Thus: \[ 16L^2 = 16 \cdot \frac{1}{16} = 1 \] And: \[ M^2 = 2^2 = 4 \] Finally: \[ 16L^2 + M^2 = 1 + 4 = 5 \] ### Final Answer The value of \( 16L^2 + M^2 \) is \( \boxed{5} \).

To solve the problem step by step, we will first find the value of \( L \) and then the value of \( M \), and finally compute \( 16L^2 + M^2 \). ### Step 1: Finding \( L = \cos^2(\alpha - \beta) \) We are given: 1. \( \sin 2\alpha + \sin 2\beta = \frac{1}{2} \) 2. \( \cos 2\alpha + \cos 2\beta = \frac{\sqrt{3}}{2} \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(...

    Text Solution

    |

  2. If a, b, c are non-zero than minimumm value of expression (((a^(4)+3...

    Text Solution

    |

  3. Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = ...

    Text Solution

    |

  4. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  5. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  6. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  7. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |

  8. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  9. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |

  10. If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S(10) is...

    Text Solution

    |

  11. If p, q, r each are positive rational number such tlaht p gt q gt r an...

    Text Solution

    |

  12. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  13. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  14. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  15. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  16. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  17. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  18. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  19. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  20. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |