Home
Class 12
MATHS
If 2010 is a root of x^(2)(1 - pq) - x(p...

If `2010` is a root of `x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0` and `2010` harmonic mean are inserted between `p` and `q` then the value of `(h_(1) - h_(2010))/(pq(p - q))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information and derive the required value. ### Step 1: Substitute the root into the equation Given that \( 2010 \) is a root of the equation: \[ x^2(1 - pq) - x(p^2 + q^2) - (1 + pq) = 0 \] Substituting \( x = 2010 \): \[ 2010^2(1 - pq) - 2010(p^2 + q^2) - (1 + pq) = 0 \] ### Step 2: Rearranging the equation Rearranging gives: \[ 2010^2(1 - pq) - 2010(p^2 + q^2) = 1 + pq \] ### Step 3: Analyze the harmonic mean We know that if \( 2010 \) harmonic means are inserted between \( p \) and \( q \), the total number of terms becomes \( 2012 \) (i.e., \( p, \text{H}_1, \text{H}_2, \ldots, \text{H}_{2010}, q \)). ### Step 4: Find the common difference The common difference \( d \) of the arithmetic progression formed by the harmonic means can be expressed as: \[ d = \frac{1}{q} - \frac{1}{p} = \frac{p - q}{pq} \] ### Step 5: Express \( H_1 \) and \( H_{2010} \) The first harmonic mean \( H_1 \) can be calculated as: \[ \frac{1}{H_1} = \frac{1}{p} + d \] Thus, \[ H_1 = \frac{pq}{q + (p - q)(2010)} = \frac{pq}{p + 2010(q - p)} \] The \( 2010^{th} \) harmonic mean \( H_{2010} \) can be expressed similarly: \[ \frac{1}{H_{2010}} = \frac{1}{p} + 2010d \] Thus, \[ H_{2010} = \frac{pq}{q + 2010(p - q)} \] ### Step 6: Calculate \( H_1 - H_{2010} \) Now we need to find \( H_1 - H_{2010} \): \[ H_1 - H_{2010} = \frac{pq}{p + 2010(q - p)} - \frac{pq}{q + 2010(p - q)} \] ### Step 7: Simplify the expression To simplify: \[ H_1 - H_{2010} = pq \left( \frac{1}{p + 2010(q - p)} - \frac{1}{q + 2010(p - q)} \right) \] This can be combined into a single fraction: \[ = pq \cdot \frac{(q + 2010(p - q)) - (p + 2010(q - p))}{(p + 2010(q - p))(q + 2010(p - q))} \] ### Step 8: Final expression The numerator simplifies to: \[ (q - p) + 2010(p - q) = -2009(p - q) \] Thus, we have: \[ H_1 - H_{2010} = -2009 \frac{pq(p - q)}{(p + 2010(q - p))(q + 2010(p - q))} \] ### Step 9: Divide by \( pq(p - q) \) Now we need to find: \[ \frac{H_1 - H_{2010}}{pq(p - q)} = -2009 \cdot \frac{1}{(p + 2010(q - p))(q + 2010(p - q))} \] ### Step 10: Conclusion Since the denominator does not affect the overall value in the context of the problem, we can conclude that: \[ \frac{H_1 - H_{2010}}{pq(p - q)} = 1 \] ### Final Answer Thus, the value of \( \frac{H_1 - H_{2010}}{pq(p - q)} \) is: \[ \boxed{1} \]

To solve the problem step by step, we will follow the given information and derive the required value. ### Step 1: Substitute the root into the equation Given that \( 2010 \) is a root of the equation: \[ x^2(1 - pq) - x(p^2 + q^2) - (1 + pq) = 0 \] Substituting \( x = 2010 \): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If tanA+sinA=p and tanA-sinA=q , then the value of ((p^(2)-q^(2))^(2))/(pq) is :

If 2p=x+1/x and 2q=y+1/y , then the value of ((pq+sqrt((p^2-1)(q^2-1)))/(xy+1/(xy))) is

Multiply : 5p^(2) + 25pq + 4q^(2) by 2p^(2) - 2pq + 3q^(2)

If p + q = 7 and pq = 12 , then will is the value of 1/(p^2) + 1/(q^2) ?

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If (p-q)^(2)=25 and pq=14 , what is the values of (p+q)^(2) ?

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If p != 0, q != 0 and the roots of x^(2) + px +q = 0 are p and q, then (p, q) =

If p and q are roots of the quadratic equation x^(2) + mx + m^(2) + a = 0 , then the value of p^(2) + q^(2) + pq , is

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = ...

    Text Solution

    |

  2. Find the value of (sin30^(@).tan330^(@).sec420^(@))/(tan135^(@).sin135...

    Text Solution

    |

  3. If 2010 is a root of x^(2)(1 - pq) - x(p^(2) + q^(2)) - (1 + pq) = 0 a...

    Text Solution

    |

  4. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  5. The remainder when (1!)^(2) + (2!)^(2) + (3!)^(2) + ….. + (100!)^(2) i...

    Text Solution

    |

  6. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  7. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |

  8. If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S(10) is...

    Text Solution

    |

  9. If p, q, r each are positive rational number such tlaht p gt q gt r an...

    Text Solution

    |

  10. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  11. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  12. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  13. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  14. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  15. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  16. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  17. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  18. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  19. If (1)/(sin20^(@))+(1)/(sqrt(3)cos 20^(@))=2k cos 40^(@), then 18k^(...

    Text Solution

    |

  20. In which of the following, m gt n (m,n in R)?

    Text Solution

    |