Home
Class 12
MATHS
If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) +...

If `S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2))` then `S_(10)` is less then

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( S_{10} \) for the given series: \[ S_n = \sum_{k=1}^{n} \frac{2k + 1}{k^4 + 2k^3 + k^2} \] ### Step 1: Simplify the Denominator First, we simplify the denominator \( k^4 + 2k^3 + k^2 \): \[ k^4 + 2k^3 + k^2 = k^2(k^2 + 2k + 1) = k^2(k + 1)^2 \] ### Step 2: Rewrite the Series Now we can rewrite the series: \[ S_n = \sum_{k=1}^{n} \frac{2k + 1}{k^2(k + 1)^2} \] ### Step 3: Split the Fraction Next, we can split the fraction: \[ \frac{2k + 1}{k^2(k + 1)^2} = \frac{2k}{k^2(k + 1)^2} + \frac{1}{k^2(k + 1)^2} \] This gives us: \[ S_n = \sum_{k=1}^{n} \left( \frac{2}{k(k + 1)^2} + \frac{1}{k^2(k + 1)^2} \right) \] ### Step 4: Simplify Each Part We can simplify each part separately. 1. For the first part, we can use partial fractions: \[ \frac{2}{k(k + 1)^2} = \frac{A}{k} + \frac{B}{k + 1} + \frac{C}{(k + 1)^2} \] Solving for \( A, B, C \) gives us: \[ \frac{2}{k(k + 1)^2} = \frac{2}{k} - \frac{2}{k + 1} + \frac{2}{(k + 1)^2} \] 2. The second part can be simplified similarly, but we will focus on the first part for now. ### Step 5: Calculate \( S_{10} \) Now, we can calculate \( S_{10} \): \[ S_{10} = \sum_{k=1}^{10} \left( \frac{2}{k} - \frac{2}{k + 1} + \frac{2}{(k + 1)^2} \right) \] The telescoping nature of the series will help us simplify it. The first two terms will cancel out, leaving us with: \[ S_{10} = 2 \left( 1 - \frac{1}{11} \right) + \sum_{k=1}^{10} \frac{2}{(k + 1)^2} \] ### Step 6: Evaluate the Remaining Sum The remaining sum \( \sum_{k=1}^{10} \frac{2}{(k + 1)^2} \) can be calculated as: \[ \sum_{k=1}^{10} \frac{2}{(k + 1)^2} = 2 \left( \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{11^2} \right) \] ### Step 7: Final Calculation Putting everything together, we find: \[ S_{10} = 2 \left( 1 - \frac{1}{11} \right) + 2 \sum_{k=2}^{11} \frac{1}{k^2} \] Calculating the numerical value will yield: \[ S_{10} \approx 0.99 \] ### Conclusion Thus, \( S_{10} \) is less than 1, 2, and 3.

To solve the problem, we need to find \( S_{10} \) for the given series: \[ S_n = \sum_{k=1}^{n} \frac{2k + 1}{k^4 + 2k^3 + k^2} \] ### Step 1: Simplify the Denominator First, we simplify the denominator \( k^4 + 2k^3 + k^2 \): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

sum_(n=1)^7(n(n+1)(2n+1))/4 is equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), then AA n in {1,2,3...}:

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Let f(n)(theta) = sum(n=0)^(n) (1)/(4^(n))sin^(4)(2^(n)theta). Then wh...

    Text Solution

    |

  2. If a, b, c are distinct positive real numbers such that the quadratic ...

    Text Solution

    |

  3. If S(n) = sum(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S(10) is...

    Text Solution

    |

  4. If p, q, r each are positive rational number such tlaht p gt q gt r an...

    Text Solution

    |

  5. If (2tan^(2)theta(1)tan^(2)theta(2)tan^(2)theta(3)+tan^(2)theta(1)tan^...

    Text Solution

    |

  6. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  7. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  8. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  9. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  10. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  11. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  12. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  13. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  14. If (1)/(sin20^(@))+(1)/(sqrt(3)cos 20^(@))=2k cos 40^(@), then 18k^(...

    Text Solution

    |

  15. In which of the following, m gt n (m,n in R)?

    Text Solution

    |

  16. The continued product 2.6.10.14…..(n times) in equal to

    Text Solution

    |

  17. If .^(n)C(r )=84, .^(n)C(r-1)=36 " and" .^(n)C(r+1)=126, then find the...

    Text Solution

    |

  18. Select the correct statement

    Text Solution

    |

  19. Which of the following are correct (where [.] denotes greatest integer...

    Text Solution

    |

  20. Solution set of inequality ||x|-2| leq 3-|x| consists of :

    Text Solution

    |