Home
Class 12
MATHS
Let a, b, c , d he real numbers such th...

Let `a, b, c , d` he real numbers such that `a + b+c+d = 10`, then the minimum value of `a^2 cot 9^@+b^2 cot 27^@+c^2 cot 63^@+d^2 cot 81^@` is `sqrtn ,(n in N)` find n.

A

even

B

odd

C

prime

D

divisible by `'5'`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ \) given the constraint \( a + b + c + d = 10 \), we can follow these steps: ### Step 1: Understand the Expression We have the expression \( E = a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ \). We need to minimize this under the constraint \( a + b + c + d = 10 \). ### Step 2: Use the Cauchy-Schwarz Inequality We can apply the Cauchy-Schwarz inequality, which states that for any real numbers \( x_1, x_2, \ldots, x_n \) and \( y_1, y_2, \ldots, y_n \): \[ (x_1^2 + x_2^2 + \ldots + x_n^2)(y_1^2 + y_2^2 + \ldots + y_n^2) \geq (x_1y_1 + x_2y_2 + \ldots + x_ny_n)^2 \] ### Step 3: Apply Cauchy-Schwarz Set \( x_1 = a, x_2 = b, x_3 = c, x_4 = d \) and \( y_1 = \cot 9^\circ, y_2 = \cot 27^\circ, y_3 = \cot 63^\circ, y_4 = \cot 81^\circ \). Then we have: \[ (a^2 + b^2 + c^2 + d^2)(\cot^2 9^\circ + \cot^2 27^\circ + \cot^2 63^\circ + \cot^2 81^\circ) \geq (a \cot 9^\circ + b \cot 27^\circ + c \cot 63^\circ + d \cot 81^\circ)^2 \] ### Step 4: Simplify the Problem Using the constraint \( a + b + c + d = 10 \), we can express \( a^2 + b^2 + c^2 + d^2 \) in terms of \( a + b + c + d \): \[ a^2 + b^2 + c^2 + d^2 \geq \frac{(a + b + c + d)^2}{4} = \frac{10^2}{4} = 25 \] ### Step 5: Calculate the Minimum Value Thus, we have: \[ E \geq 25 \cdot (\cot^2 9^\circ + \cot^2 27^\circ + \cot^2 63^\circ + \cot^2 81^\circ) \] ### Step 6: Evaluate the Cotangent Values Using known values: - \( \cot 9^\circ \) - \( \cot 27^\circ \) - \( \cot 63^\circ = \tan 27^\circ \) - \( \cot 81^\circ = \tan 9^\circ \) We can find that: \[ \cot 9^\circ \cdot \cot 81^\circ = 1 \quad \text{and} \quad \cot 27^\circ \cdot \cot 63^\circ = 1 \] Thus, we can simplify the expression further. ### Step 7: Find the Minimum Value After evaluating the cotangent values and applying the Cauchy-Schwarz inequality, we find that the minimum value of \( E \) is \( 25 \). ### Conclusion Since we have \( \sqrt{n} = 25 \), squaring both sides gives \( n = 625 \). ### Final Answer The value of \( n \) is \( \boxed{625} \).

To find the minimum value of the expression \( a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ \) given the constraint \( a + b + c + d = 10 \), we can follow these steps: ### Step 1: Understand the Expression We have the expression \( E = a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ \). We need to minimize this under the constraint \( a + b + c + d = 10 \). ### Step 2: Use the Cauchy-Schwarz Inequality We can apply the Cauchy-Schwarz inequality, which states that for any real numbers \( x_1, x_2, \ldots, x_n \) and \( y_1, y_2, \ldots, y_n \): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If A + B + C=pi , then find the minimum value of cot^2A + cot^2B + cot^2C

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cot (A/2)

In a Delta ABC if 9 (a^2 + b^2) = 17c^2 then the value of the (cot A + cot B) / cotC is

In a Delta ABC if 9 (a^2 + b^2) = 17c^2 then the value of the (cot A + cot B) / cotC is

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

Prove: cot^2A cos e c^2B-cot^2B cos e c^2A=cot^2A-cot^2B .

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In Delta ABC , if a = 10 and b cot B + c cot C = 2(r + R) then the maximum area of DeltaABC will be

If A+B+C=0, then the value of sum cot (B+C-A) cot (C+A-B) is equal to

If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) 7 (c) 5 (d) none of these

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) +...

    Text Solution

    |

  2. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  3. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  4. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  5. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  6. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  7. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  8. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  9. If (1)/(sin20^(@))+(1)/(sqrt(3)cos 20^(@))=2k cos 40^(@), then 18k^(...

    Text Solution

    |

  10. In which of the following, m gt n (m,n in R)?

    Text Solution

    |

  11. The continued product 2.6.10.14…..(n times) in equal to

    Text Solution

    |

  12. If .^(n)C(r )=84, .^(n)C(r-1)=36 " and" .^(n)C(r+1)=126, then find the...

    Text Solution

    |

  13. Select the correct statement

    Text Solution

    |

  14. Which of the following are correct (where [.] denotes greatest integer...

    Text Solution

    |

  15. Solution set of inequality ||x|-2| leq 3-|x| consists of :

    Text Solution

    |

  16. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  17. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  18. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  19. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  20. Let M(2, (13)/(8)) is the circumcentre of DeltaPQR whose sides PQ and ...

    Text Solution

    |