Home
Class 12
MATHS
If sum(t=1)^(1003) (r^(2) + 1)r! = a! - ...

If `sum_(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!)` where `a, b, c in N` the least value of `(a + b + c)` is `pqrs` then

A

`p + q+ r + s = 4`

B

`(p + q)/(r + s) = 1`

C

`(p + q + r)/(s) = 3`

D

`p.q.r.s` is even

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation and express it in the form \( a! - b(c!) \). ### Step 1: Write the summation We start with the given summation: \[ S = \sum_{r=1}^{1003} (r^2 + 1) r! \] ### Step 2: Simplify the expression We can rewrite \( r^2 + 1 \) as: \[ r^2 + 1 = r^2 + r - r + 1 = (r^2 + r) - (r - 1) \] Thus, we can express the summation as: \[ S = \sum_{r=1}^{1003} \left( (r^2 + r) r! - (r - 1) r! \right) \] ### Step 3: Factor out \( r! \) Now, we can factor out \( r! \): \[ S = \sum_{r=1}^{1003} \left( r(r + 1)! - (r - 1) r! \right) \] ### Step 4: Rewrite the terms The term \( r(r + 1)! \) can be rewritten as: \[ r(r + 1)! = (r + 1)! - (r - 1) r! \] So, we have: \[ S = \sum_{r=1}^{1003} \left( (r + 1)! - (r - 1) r! \right) \] ### Step 5: Evaluate the summation Now we can evaluate the summation: \[ S = \sum_{r=1}^{1003} (r + 1)! - \sum_{r=1}^{1003} (r - 1) r! \] The first term simplifies to: \[ \sum_{r=1}^{1003} (r + 1)! = 1004! - 1! \] The second term simplifies to: \[ \sum_{r=1}^{1003} (r - 1) r! = \sum_{r=2}^{1003} (r - 1) r! = 1003! - 0! \] ### Step 6: Combine the results Combining these results, we have: \[ S = 1004! - 1 - (1003! - 1) = 1004! - 1003! \] ### Step 7: Express in the required form We can express this as: \[ S = 1005 \cdot 1004! - 2 \cdot 1004! \] Thus, we can write: \[ S = 1005 \cdot 1004! - 2 \cdot 1004! \] ### Step 8: Identify \( a, b, c \) From the expression \( S = a! - b(c!) \), we can identify: - \( a = 1005 \) - \( b = 2 \) - \( c = 1004 \) ### Step 9: Calculate \( a + b + c \) Now, we calculate: \[ a + b + c = 1005 + 2 + 1004 = 2011 \] ### Final Result Thus, the least value of \( (a + b + c) \) is \( 2011 \).

To solve the problem, we need to evaluate the summation and express it in the form \( a! - b(c!) \). ### Step 1: Write the summation We start with the given summation: \[ S = \sum_{r=1}^{1003} (r^2 + 1) r! \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=0)^(203)((r^(2)+2)(r+1)!+2r(r+1)!)=a!-2(b) (where a,b in N ), then a-b is equal to_____

If sum_(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3) , where a gt b gt c , then

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

If T_(r)=(1)/(log_(z)4) (where r in N ), then the value of sum_(r=1)^(4) T_(r) is :

If a,b,c in R - {0} and a^(2) = bc and a + b +c = abc then the least possible value of a^(2) is

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

If sum _(r=1)^n (r^2+1)r! =200xx201! Then n= (A) 200 (B) 201 (C) 199 (D) none of these

If sum_(r=1)^(n)r(r+1)+sum_(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b,cinN) then (A) a + b + c = 24 (B) 2a + b - c = 0 (C) a - b + c= 6 (D) ab + bc + ca = 11

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. For all equation |x^(2) - 10x + 9| = kx

    Text Solution

    |

  2. Let a, b, c , d he real numbers such that a + b+c+d = 10, then the m...

    Text Solution

    |

  3. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  4. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  5. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  6. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  7. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  8. If (1)/(sin20^(@))+(1)/(sqrt(3)cos 20^(@))=2k cos 40^(@), then 18k^(...

    Text Solution

    |

  9. In which of the following, m gt n (m,n in R)?

    Text Solution

    |

  10. The continued product 2.6.10.14…..(n times) in equal to

    Text Solution

    |

  11. If .^(n)C(r )=84, .^(n)C(r-1)=36 " and" .^(n)C(r+1)=126, then find the...

    Text Solution

    |

  12. Select the correct statement

    Text Solution

    |

  13. Which of the following are correct (where [.] denotes greatest integer...

    Text Solution

    |

  14. Solution set of inequality ||x|-2| leq 3-|x| consists of :

    Text Solution

    |

  15. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  16. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  17. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  18. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  19. Let M(2, (13)/(8)) is the circumcentre of DeltaPQR whose sides PQ and ...

    Text Solution

    |

  20. Let M(2,13/8) is the circumcentre of DeltaPQR whose sides PQ and PR ...

    Text Solution

    |