Home
Class 12
MATHS
If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1...

If `a_(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2))` then value of `sum_(n=1)^(20) (1)/(a^(n))` is

A

even

B

odd

C

prime

D

divisible by `'3'`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression for \( a_n \) and then compute the summation \( \sum_{n=1}^{20} \frac{1}{a_n} \). ### Step-by-Step Solution: 1. **Define \( a_n \)**: \[ a_n = \sqrt{1 + \left(1 + \frac{1}{n}\right)^2} + \sqrt{1 + \left(1 - \frac{1}{n}\right)^2} \] 2. **Expand the squares inside the square roots**: \[ \left(1 + \frac{1}{n}\right)^2 = 1 + 2 \cdot \frac{1}{n} + \left(\frac{1}{n}\right)^2 = 1 + \frac{2}{n} + \frac{1}{n^2} \] \[ \left(1 - \frac{1}{n}\right)^2 = 1 - 2 \cdot \frac{1}{n} + \left(\frac{1}{n}\right)^2 = 1 - \frac{2}{n} + \frac{1}{n^2} \] 3. **Substituting back into \( a_n \)**: \[ a_n = \sqrt{1 + 1 + \frac{2}{n} + \frac{1}{n^2}} + \sqrt{1 + 1 - \frac{2}{n} + \frac{1}{n^2}} \] \[ = \sqrt{2 + \frac{2}{n} + \frac{1}{n^2}} + \sqrt{2 - \frac{2}{n} + \frac{1}{n^2}} \] 4. **Simplify each square root**: \[ = \sqrt{2 + \frac{2}{n} + \frac{1}{n^2}} + \sqrt{2 - \frac{2}{n} + \frac{1}{n^2}} \] 5. **Combine the terms**: To simplify further, we can factor out common terms: \[ = \sqrt{2 + \frac{1}{n^2}} + \sqrt{2 + \frac{1}{n^2}} = 2\sqrt{2 + \frac{1}{n^2}} \] 6. **Evaluate \( \frac{1}{a_n} \)**: \[ \frac{1}{a_n} = \frac{1}{2\sqrt{2 + \frac{1}{n^2}}} \] 7. **Set up the summation**: \[ \sum_{n=1}^{20} \frac{1}{a_n} = \sum_{n=1}^{20} \frac{1}{2\sqrt{2 + \frac{1}{n^2}}} \] \[ = \frac{1}{2} \sum_{n=1}^{20} \frac{1}{\sqrt{2 + \frac{1}{n^2}}} \] 8. **Approximate the summation**: For large \( n \), \( \sqrt{2 + \frac{1}{n^2}} \) approaches \( \sqrt{2} \). Thus: \[ \sum_{n=1}^{20} \frac{1}{\sqrt{2 + \frac{1}{n^2}}} \approx \sum_{n=1}^{20} \frac{1}{\sqrt{2}} = \frac{20}{\sqrt{2}} = 10\sqrt{2} \] 9. **Final calculation**: \[ \sum_{n=1}^{20} \frac{1}{a_n} \approx \frac{1}{2} \cdot 10\sqrt{2} = 5\sqrt{2} \] ### Final Answer: The value of \( \sum_{n=1}^{20} \frac{1}{a_n} \) is approximately \( 5\sqrt{2} \).

To solve the problem, we need to evaluate the expression for \( a_n \) and then compute the summation \( \sum_{n=1}^{20} \frac{1}{a_n} \). ### Step-by-Step Solution: 1. **Define \( a_n \)**: \[ a_n = \sqrt{1 + \left(1 + \frac{1}{n}\right)^2} + \sqrt{1 + \left(1 - \frac{1}{n}\right)^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

Let S _(n ) = sum _( k =0) ^(n) (1)/( sqrt ( k +1) + sqrt k) What is the value of sum _( n =1) ^( 99) (1)/( S _(n ) + S _( n -1)) ?=

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

If x = sqrt((n-1)/(n+1)) , find the value of (x/(x-1))^2+(x/(x+1))^2

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If x^2-x+1=0 then the value of sum_[n=1]^[5][x^n+1/x^n]^2 is:

For any n positive numbers a_(1),a_(2),…,a_(n) such that sum_(i=1)^(n) a_(i)=alpha , the least value of sum_(i=1)^(n) a_(i)^(-1) , is

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. If sum(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the l...

    Text Solution

    |

  2. (.^(50)C(1))^(2)+2(.^(50)C(2))^(2)+3(.^(50)C(3))^(2)+.....+50(.^(50)C(...

    Text Solution

    |

  3. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  4. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  5. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  6. If (1)/(sin20^(@))+(1)/(sqrt(3)cos 20^(@))=2k cos 40^(@), then 18k^(...

    Text Solution

    |

  7. In which of the following, m gt n (m,n in R)?

    Text Solution

    |

  8. The continued product 2.6.10.14…..(n times) in equal to

    Text Solution

    |

  9. If .^(n)C(r )=84, .^(n)C(r-1)=36 " and" .^(n)C(r+1)=126, then find the...

    Text Solution

    |

  10. Select the correct statement

    Text Solution

    |

  11. Which of the following are correct (where [.] denotes greatest integer...

    Text Solution

    |

  12. Solution set of inequality ||x|-2| leq 3-|x| consists of :

    Text Solution

    |

  13. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  14. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  15. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  16. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  17. Let M(2, (13)/(8)) is the circumcentre of DeltaPQR whose sides PQ and ...

    Text Solution

    |

  18. Let M(2,13/8) is the circumcentre of DeltaPQR whose sides PQ and PR ...

    Text Solution

    |

  19. Consider a polygon of sides 'n' which satisfies the equation 3*.^(n)P(...

    Text Solution

    |

  20. Consider a polygon of sides 'n' which satisfies the equation 3*.^(n)P(...

    Text Solution

    |