Home
Class 12
MATHS
Let r1, r2, r3 be the three (not neces...

Let `r_1, r_2, r_3` be the three (not necessarily distinct) solution to the equation `x^3 + 4x^2 - ax +1 = 0`. If a can be any real number, then find the minimum value of `(r_1+1/r_1)^2+(r_2+1/r_2)^2+(r_3+1/r_3)^2`.

A

even

B

odd

C

prime

D

divisible by `'13'`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( (r_1 + \frac{1}{r_1})^2 + (r_2 + \frac{1}{r_2})^2 + (r_3 + \frac{1}{r_3})^2 \), we start with the roots \( r_1, r_2, r_3 \) of the polynomial \( x^3 + 4x^2 - ax + 1 = 0 \). ### Step 1: Use Vieta's Formulas From Vieta's formulas, we know: - \( r_1 + r_2 + r_3 = -4 \) - \( r_1 r_2 + r_2 r_3 + r_3 r_1 = -a \) - \( r_1 r_2 r_3 = -1 \) ### Step 2: Rewrite the Expression We can rewrite the expression we want to minimize: \[ (r_i + \frac{1}{r_i})^2 = r_i^2 + 2 + \frac{1}{r_i^2} \] Thus, we have: \[ A = (r_1 + \frac{1}{r_1})^2 + (r_2 + \frac{1}{r_2})^2 + (r_3 + \frac{1}{r_3})^2 = r_1^2 + r_2^2 + r_3^2 + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} + 6 \] ### Step 3: Find \( r_1^2 + r_2^2 + r_3^2 \) Using the identity: \[ r_1^2 + r_2^2 + r_3^2 = (r_1 + r_2 + r_3)^2 - 2(r_1 r_2 + r_2 r_3 + r_3 r_1) \] Substituting the values from Vieta's: \[ r_1^2 + r_2^2 + r_3^2 = (-4)^2 - 2(-a) = 16 + 2a \] ### Step 4: Find \( \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} \) Using the identity: \[ \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{(r_2 r_3)^2 + (r_1 r_3)^2 + (r_1 r_2)^2}{(r_1 r_2 r_3)^2} \] Substituting \( r_1 r_2 r_3 = -1 \): \[ \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = (r_2 r_3)^2 + (r_1 r_3)^2 + (r_1 r_2)^2 \] ### Step 5: Use the Square of Sums Using the identity: \[ (r_1 r_2 + r_2 r_3 + r_3 r_1)^2 = r_1^2 r_2^2 + r_2^2 r_3^2 + r_3^2 r_1^2 + 2r_1 r_2 r_3(r_1 + r_2 + r_3) \] Substituting the values: \[ (-a)^2 = r_1^2 r_2^2 + r_2^2 r_3^2 + r_3^2 r_1^2 + 2(-1)(-4) \] This gives: \[ a^2 = r_1^2 r_2^2 + r_2^2 r_3^2 + r_3^2 r_1^2 + 8 \] Thus: \[ r_1^2 r_2^2 + r_2^2 r_3^2 + r_3^2 r_1^2 = a^2 - 8 \] ### Step 6: Substitute Back into \( A \) Now we can substitute back into \( A \): \[ A = (16 + 2a) + (a^2 - 8) + 6 = a^2 + 2a + 14 \] ### Step 7: Find the Minimum Value To find the minimum value of \( A = a^2 + 2a + 14 \), we complete the square: \[ A = (a + 1)^2 + 13 \] The minimum value occurs when \( (a + 1)^2 = 0 \), which gives \( a = -1 \). Thus: \[ A_{\text{min}} = 0 + 13 = 13 \] ### Final Answer The minimum value of \( (r_1 + \frac{1}{r_1})^2 + (r_2 + \frac{1}{r_2})^2 + (r_3 + \frac{1}{r_3})^2 \) is \( \boxed{13} \).

To find the minimum value of \( (r_1 + \frac{1}{r_1})^2 + (r_2 + \frac{1}{r_2})^2 + (r_3 + \frac{1}{r_3})^2 \), we start with the roots \( r_1, r_2, r_3 \) of the polynomial \( x^3 + 4x^2 - ax + 1 = 0 \). ### Step 1: Use Vieta's Formulas From Vieta's formulas, we know: - \( r_1 + r_2 + r_3 = -4 \) - \( r_1 r_2 + r_2 r_3 + r_3 r_1 = -a \) - \( r_1 r_2 r_3 = -1 \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

In any triangle, the minimum value of r_(1) r_(2) r_(3) //r^(3) is equal to

Value of 1/(r_(1)^2)'+ 1/(r_(2)^2)+ 1/(r_(3)^2)+ 1/(r_()^2) is :

In any triangle ABC, find the least value of (r_(1) + r_(2) + r_(3))/(r)

r + r_3 + r_1 - r_2 =

The value of 1/(r_(1)^(2))+1/(r_(2)^(2))+1/(r_(2)^(3))+1/(r^(2)) , is

In a triangle ABC,if 1/r_1^2+1/r_2^2+1/r_3^2+1/r^2=

Prove that : 1/(r_1)+1/(r_2)+1/(r_3)=1/r

In any triangle, the minimum value of r_1r_2r_3//r^3 is equal to (a) 1 (b) 9 (c) 27 (d) none of these

Prove that (r_1-r)(r_2-r)(r_3-r)=4R r^2

If r,r_(1) ,r_(2), r_(3) have their usual meanings , the value of 1/(r_(1))+1/(r_(2))+1/(r_(3)) , is

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. If a(n) = sqrt(1+(1+(1)/(n))^(2))+sqrt(1+(1-(1)/(n))^(2)) then value o...

    Text Solution

    |

  2. Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+……....

    Text Solution

    |

  3. Let r1, r2, r3 be the three (not necessarily distinct) solution to t...

    Text Solution

    |

  4. If (1)/(sin20^(@))+(1)/(sqrt(3)cos 20^(@))=2k cos 40^(@), then 18k^(...

    Text Solution

    |

  5. In which of the following, m gt n (m,n in R)?

    Text Solution

    |

  6. The continued product 2.6.10.14…..(n times) in equal to

    Text Solution

    |

  7. If .^(n)C(r )=84, .^(n)C(r-1)=36 " and" .^(n)C(r+1)=126, then find the...

    Text Solution

    |

  8. Select the correct statement

    Text Solution

    |

  9. Which of the following are correct (where [.] denotes greatest integer...

    Text Solution

    |

  10. Solution set of inequality ||x|-2| leq 3-|x| consists of :

    Text Solution

    |

  11. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  12. Let I(1) : (log(x)2) (log(2x)2) (log(2)4x)gt1 I(2) : x^((log(10)x)^(...

    Text Solution

    |

  13. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  14. Let alpha, beta are the root of equation acostheta + bsintheta = c. ...

    Text Solution

    |

  15. Let M(2, (13)/(8)) is the circumcentre of DeltaPQR whose sides PQ and ...

    Text Solution

    |

  16. Let M(2,13/8) is the circumcentre of DeltaPQR whose sides PQ and PR ...

    Text Solution

    |

  17. Consider a polygon of sides 'n' which satisfies the equation 3*.^(n)P(...

    Text Solution

    |

  18. Consider a polygon of sides 'n' which satisfies the equation 3*.^(n)P(...

    Text Solution

    |

  19. In the expansion of (3^(-x//4)+3^(5x//4))^(pi) the sum of binomial coe...

    Text Solution

    |

  20. In the expansion of (3^(-x//4)+3^(5x//4))^(pi) the sum of binomial coe...

    Text Solution

    |