Home
Class 12
MATHS
If sum(r=1)^(n)r(r+1)+sum(r=1)^(n)(r+1)(...

If `sum_(r=1)^(n)r(r+1)+sum_(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b,cinN)` then (A) `a + b + c = 24` (B) `2a + b - c = 0` (C) `a - b + c= 6` (D) `ab + bc + ca = 11`

A

`a + b + c = 24`

B

`2a + b - c = 0`

C

`a - b + c= 6`

D

`ab + bc + ca = 11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the left-hand side of the equation and simplify it step by step. ### Step 1: Write down the sums We start with the expression: \[ \sum_{r=1}^{n} r(r+1) + \sum_{r=1}^{n} (r+1)(r+2) \] ### Step 2: Simplify the first sum The first sum can be simplified as follows: \[ \sum_{r=1}^{n} r(r+1) = \sum_{r=1}^{n} (r^2 + r) = \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \] Using the formulas for the sums: - \(\sum_{r=1}^{n} r = \frac{n(n+1)}{2}\) - \(\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}\) Thus, \[ \sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \] To combine these, we need a common denominator: \[ = \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{6} = \frac{n(n+1)(2n+1 + 3)}{6} = \frac{n(n+1)(2n+4)}{6} \] ### Step 3: Simplify the second sum Now, simplify the second sum: \[ \sum_{r=1}^{n} (r+1)(r+2) = \sum_{r=1}^{n} (r^2 + 3r + 2) = \sum_{r=1}^{n} r^2 + 3\sum_{r=1}^{n} r + \sum_{r=1}^{n} 2 \] Using the same formulas: \[ = \frac{n(n+1)(2n+1)}{6} + 3 \cdot \frac{n(n+1)}{2} + 2n \] Combining these: \[ = \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{2} + 2n \] To combine these, we again need a common denominator: \[ = \frac{n(n+1)(2n+1)}{6} + \frac{9n(n+1)}{6} + \frac{12n}{6} = \frac{n(n+1)(2n+1 + 9) + 12n}{6} \] This simplifies to: \[ = \frac{n(n+1)(2n + 10)}{6} \] ### Step 4: Combine both sums Now we combine both results: \[ \sum_{r=1}^{n} r(r+1) + \sum_{r=1}^{n} (r+1)(r+2) = \frac{n(n+1)(2n + 4)}{6} + \frac{n(n+1)(2n + 10)}{6} \] Factoring out \(\frac{n(n+1)}{6}\): \[ = \frac{n(n+1)}{6} \left( (2n + 4) + (2n + 10) \right) = \frac{n(n+1)}{6} (4n + 14) = \frac{n(n+1)(2n + 7)}{3} \] ### Step 5: Set equal to the right-hand side According to the problem statement: \[ \frac{n(n+1)(2n + 7)}{3} = \frac{n(an^2 + bn + c)}{3} \] This implies: \[ n(n+1)(2n + 7) = n(an^2 + bn + c) \] Thus, we can equate coefficients: - Coefficient of \(n^2\): \(a = 2\) - Coefficient of \(n\): \(b = 9\) - Constant term: \(c = 13\) ### Step 6: Verify the options Now we check the options given: 1. \(a + b + c = 2 + 9 + 13 = 24\) (True) 2. \(2a + b - c = 2(2) + 9 - 13 = 4 + 9 - 13 = 0\) (True) 3. \(a - b + c = 2 - 9 + 13 = 6\) (True) 4. \(ab + bc + ca = 2 \cdot 9 + 9 \cdot 13 + 2 \cdot 13 = 18 + 117 + 26 = 161\) (False) Thus, options A, B, and C are correct.

To solve the given problem, we need to analyze the left-hand side of the equation and simplify it step by step. ### Step 1: Write down the sums We start with the expression: \[ \sum_{r=1}^{n} r(r+1) + \sum_{r=1}^{n} (r+1)(r+2) \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

If sum_(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3) , where a gt b gt c , then

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

If sum_(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the least value of (a + b + c) is pqrs then

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

If sum_(r=0)^(n)((r+2)/(r+1)).^n C_r=(2^8-1)/6 , then n is (A) 8 (B) 4 (C) 6 (D) 5

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Third term in expression of (x + x^(log(10)x))^(5) is 10^(6) than poss...

    Text Solution

    |

  2. If (1 + x + x^(2) + x^(3))^(n) = a(0) + a(1)x + a(2)x^(2)+"……….."a(3n)...

    Text Solution

    |

  3. The number of ways in which 20 identical coins be distributed in 4 per...

    Text Solution

    |

  4. Sides of DeltaABC are in A.P. If a lt "min" {b,c}, then cos A may be e...

    Text Solution

    |

  5. a, b, c are positive integers froming an increasing G.P. whose common ...

    Text Solution

    |

  6. If sum(r=1)^(n)r(r+1)+sum(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b...

    Text Solution

    |

  7. Let a, x, b in A.P, a, y, b in GP a, z, b in HP where a and b are disn...

    Text Solution

    |

  8. If S(n) denotes the sum to n terms of the series (1 le n le 9)1 + 22 +...

    Text Solution

    |

  9. If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0) , then which one...

    Text Solution

    |

  10. If tan1^(@).tan2^(@).tan^(@)"………tan89^(@) = 4x^(2) + 2x then the value...

    Text Solution

    |

  11. (sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

    Text Solution

    |

  12. Number of different paths of shortest distance from A and B to in the ...

    Text Solution

    |

  13. Line x/a+y/b=1 cuts the coordinate axes at A(a ,0)a n dB(0,b) and the ...

    Text Solution

    |

  14. Consider the equation y-y1=m(x-x1) . If m and x1 are fixed and differe...

    Text Solution

    |

  15. If y= 3x+c is a tangent to the circle x^2+y^2-2x-4y-5=0 , then c is eq...

    Text Solution

    |

  16. Let three quadratic equations ax^(2) - 2bx + c = 0, bx^(2) - 2 cx + a...

    Text Solution

    |

  17. For the equation x + y + z +omega= 19, the number of positive integral...

    Text Solution

    |

  18. Let solution of inequality (16^((1)/(x)))/2^(x+3)gt1 is (-oo, a) cup (...

    Text Solution

    |

  19. If a, b and c are positive real and a = 2b + 3c, then the equation ax^...

    Text Solution

    |

  20. For the equation 1 + log(x) ((4 - x)/(10)) = (log(10)(log(10)p) - 1)lo...

    Text Solution

    |