Home
Class 12
MATHS
(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - ...

`(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =`

A

`sqrt(2)cos((pi)/(4) - x)`

B

`sqrt(2)cos((pi)/(4) + x)`

C

`sqrt(2)sin((pi)/(4) - x)`

D

`sqrt(2)sin((pi)/(4) + x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sin^3 x}{1 + \cos x} + \frac{\cos^3 x}{1 - \sin x} \] we will follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((1 + \cos x)(1 - \sin x)\). ### Step 2: Rewrite the fractions We can rewrite the expression as: \[ \frac{\sin^3 x (1 - \sin x) + \cos^3 x (1 + \cos x)}{(1 + \cos x)(1 - \sin x)} \] ### Step 3: Expand the numerator Now, we expand the numerator: \[ \sin^3 x (1 - \sin x) = \sin^3 x - \sin^4 x \] \[ \cos^3 x (1 + \cos x) = \cos^3 x + \cos^4 x \] Combining these gives: \[ \sin^3 x - \sin^4 x + \cos^3 x + \cos^4 x \] ### Step 4: Rearrange the numerator We can rearrange the terms in the numerator: \[ (\sin^3 x + \cos^3 x) + (\cos^4 x - \sin^4 x) \] ### Step 5: Factor the difference of squares Using the identity \(a^4 - b^4 = (a^2 + b^2)(a - b)(a + b)\), we can factor \(\cos^4 x - \sin^4 x\): \[ \cos^4 x - \sin^4 x = (\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) \] Since \(\cos^2 x + \sin^2 x = 1\), we have: \[ \cos^4 x - \sin^4 x = \cos^2 x - \sin^2 x \] ### Step 6: Substitute back into the expression Now substituting back, we have: \[ \sin^3 x + \cos^3 x + (\cos^2 x - \sin^2 x) \] ### Step 7: Use the sum of cubes formula The sum of cubes can be factored as follows: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x) \] Since \(\sin^2 x + \cos^2 x = 1\), we can simplify this to: \[ (\sin x + \cos x)(1 - \sin x \cos x) \] ### Step 8: Combine everything Now, we combine everything into the numerator: \[ (\sin x + \cos x)(1 - \sin x \cos x) + (\cos^2 x - \sin^2 x) \] ### Step 9: Final expression We can now write the final expression as: \[ \frac{(\sin x + \cos x)(1 - \sin x \cos x) + (\cos^2 x - \sin^2 x)}{(1 + \cos x)(1 - \sin x)} \] ### Step 10: Simplify Finally, we can simplify the entire expression, leading us to the conclusion: \[ \sin x + \cos x \] ### Final Answer Thus, the answer to the given expression is: \[ \sin x + \cos x \] ---

To solve the equation \[ \frac{\sin^3 x}{1 + \cos x} + \frac{\cos^3 x}{1 - \sin x} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

(cos^3x-sin^3x)/(cosx-sinx)

The period of f(x)=(1)/(2){(| sinx|)/(cos x)+(|cosx|)/(sinx)} , is

The period of f(x)=(1)/(2){(| sinx|)/(cos x)-(|cosx|)/(sinx)} , is

If p(x)=sinx(sin^3x+3)+cosx(cos^3x+4)+(1/2)sin^2 2x+5, then find the range of p(x)dot

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Third term in expression of (x + x^(log(10)x))^(5) is 10^(6) than poss...

    Text Solution

    |

  2. If (1 + x + x^(2) + x^(3))^(n) = a(0) + a(1)x + a(2)x^(2)+"……….."a(3n)...

    Text Solution

    |

  3. The number of ways in which 20 identical coins be distributed in 4 per...

    Text Solution

    |

  4. Sides of DeltaABC are in A.P. If a lt "min" {b,c}, then cos A may be e...

    Text Solution

    |

  5. a, b, c are positive integers froming an increasing G.P. whose common ...

    Text Solution

    |

  6. If sum(r=1)^(n)r(r+1)+sum(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b...

    Text Solution

    |

  7. Let a, x, b in A.P, a, y, b in GP a, z, b in HP where a and b are disn...

    Text Solution

    |

  8. If S(n) denotes the sum to n terms of the series (1 le n le 9)1 + 22 +...

    Text Solution

    |

  9. If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0) , then which one...

    Text Solution

    |

  10. If tan1^(@).tan2^(@).tan^(@)"………tan89^(@) = 4x^(2) + 2x then the value...

    Text Solution

    |

  11. (sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

    Text Solution

    |

  12. Number of different paths of shortest distance from A and B to in the ...

    Text Solution

    |

  13. Line x/a+y/b=1 cuts the coordinate axes at A(a ,0)a n dB(0,b) and the ...

    Text Solution

    |

  14. Consider the equation y-y1=m(x-x1) . If m and x1 are fixed and differe...

    Text Solution

    |

  15. If y= 3x+c is a tangent to the circle x^2+y^2-2x-4y-5=0 , then c is eq...

    Text Solution

    |

  16. Let three quadratic equations ax^(2) - 2bx + c = 0, bx^(2) - 2 cx + a...

    Text Solution

    |

  17. For the equation x + y + z +omega= 19, the number of positive integral...

    Text Solution

    |

  18. Let solution of inequality (16^((1)/(x)))/2^(x+3)gt1 is (-oo, a) cup (...

    Text Solution

    |

  19. If a, b and c are positive real and a = 2b + 3c, then the equation ax^...

    Text Solution

    |

  20. For the equation 1 + log(x) ((4 - x)/(10)) = (log(10)(log(10)p) - 1)lo...

    Text Solution

    |