Home
Class 12
MATHS
For the equation 1 + log(x) ((4 - x)/(10...

For the equation `1 + log_(x) ((4 - x)/(10)) = (log_(10)(log_(10)p) - 1)log_(x)10`, which one of the following(s) is (are) correct?

A

if `p = 10^(3)`, then the equation has two real solutions

B

if `p = 10^(4)`, then the equation has exactly solutions

C

if `p in (10^(4), oo)`, then the equation has no real solutions

D

if `p in (1, 10^(4))`, then the equation has two distinct real solutions.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1 + \log_{x} \left( \frac{4 - x}{10} \right) = \left( \log_{10}(\log_{10} p) - 1 \right) \log_{x} 10 \), we will follow these steps: ### Step 1: Rewrite the Equation We start by rewriting the equation: \[ 1 + \log_{x} \left( \frac{4 - x}{10} \right) = \left( \log_{10}(\log_{10} p) - 1 \right) \log_{x} 10 \] ### Step 2: Change of Base Formula Using the change of base formula, we can express the logarithms in terms of base 10: \[ \log_{x} a = \frac{\log_{10} a}{\log_{10} x} \] Thus, we rewrite the equation: \[ 1 + \frac{\log_{10} \left( \frac{4 - x}{10} \right)}{\log_{10} x} = \left( \log_{10}(\log_{10} p) - 1 \right) \frac{\log_{10} 10}{\log_{10} x} \] Since \(\log_{10} 10 = 1\), we simplify: \[ 1 + \frac{\log_{10} \left( \frac{4 - x}{10} \right)}{\log_{10} x} = \left( \log_{10}(\log_{10} p) - 1 \right) \frac{1}{\log_{10} x} \] ### Step 3: Multiply Through by \(\log_{10} x\) To eliminate the denominator, multiply through by \(\log_{10} x\): \[ \log_{10} x + \log_{10} \left( \frac{4 - x}{10} \right) = \log_{10}(\log_{10} p) - 1 \] ### Step 4: Simplify the Left Side Using properties of logarithms: \[ \log_{10} x + \log_{10} (4 - x) - \log_{10} 10 = \log_{10}(\log_{10} p) - 1 \] This simplifies to: \[ \log_{10} x + \log_{10} (4 - x) - 1 = \log_{10}(\log_{10} p) - 1 \] Adding 1 to both sides gives: \[ \log_{10} x + \log_{10} (4 - x) = \log_{10}(\log_{10} p) \] ### Step 5: Combine Logarithms Using the property of logarithms: \[ \log_{10} (x(4 - x)) = \log_{10}(\log_{10} p) \] This implies: \[ x(4 - x) = \log_{10} p \] ### Step 6: Rearranging to Form a Quadratic Equation Rearranging gives: \[ x^2 - 4x + \log_{10} p = 0 \] ### Step 7: Solve the Quadratic Equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -4\), and \(c = \log_{10} p\): \[ x = \frac{4 \pm \sqrt{16 - 4\log_{10} p}}{2} \] This simplifies to: \[ x = 2 \pm \sqrt{4 - \log_{10} p} \] ### Step 8: Analyze the Solutions 1. **If \(p = 10^3\)**: \[ x = 2 \pm \sqrt{4 - 3} = 2 \pm 1 \quad \Rightarrow \quad x = 3 \text{ or } 1 \quad (\text{only } x = 3 \text{ is valid}) \] 2. **If \(p = 10^4\)**: \[ x = 2 \pm \sqrt{4 - 4} = 2 \quad (\text{only one solution}) \] 3. **If \(p > 10^4\)**: \[ 4 - \log_{10} p < 0 \quad \Rightarrow \quad \text{no real roots} \] 4. **If \(1 < p < 10^4\)**: \[ 4 - \log_{10} p > 0 \quad \Rightarrow \quad \text{two distinct solutions} \] ### Conclusion Based on the analysis: - \(p = 10^3\) gives one valid solution. - \(p = 10^4\) gives exactly one solution. - \(p > 10^4\) gives no real solutions. - \(1 < p < 10^4\) gives two distinct solutions.

To solve the equation \( 1 + \log_{x} \left( \frac{4 - x}{10} \right) = \left( \log_{10}(\log_{10} p) - 1 \right) \log_{x} 10 \), we will follow these steps: ### Step 1: Rewrite the Equation We start by rewriting the equation: \[ 1 + \log_{x} \left( \frac{4 - x}{10} \right) = \left( \log_{10}(\log_{10} p) - 1 \right) \log_{x} 10 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 2|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

Consider the quadratic equation (log_10 8)x^2-(log_10 5)x=2(log_2 10)^-1 -x. Which of the following quantities are irrational.

If log_2 10=P ;(log_e 10)/(log_e7)=q and (11)^r= 10 , then which one of the following expressions is equivalent to log_(10) 154 ?

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.

The equation (log_(x) 10)^(3) -(log_(x) 10)^(2) - 6 log_(x) 10 = 0 is satisfied by a value of x given by

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

Find domain of the function log_10 log_10 log_10 log_10 log_10 x

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

RESONANCE ENGLISH-TEST PAPERS-PART - I MATHMATICS
  1. Third term in expression of (x + x^(log(10)x))^(5) is 10^(6) than poss...

    Text Solution

    |

  2. If (1 + x + x^(2) + x^(3))^(n) = a(0) + a(1)x + a(2)x^(2)+"……….."a(3n)...

    Text Solution

    |

  3. The number of ways in which 20 identical coins be distributed in 4 per...

    Text Solution

    |

  4. Sides of DeltaABC are in A.P. If a lt "min" {b,c}, then cos A may be e...

    Text Solution

    |

  5. a, b, c are positive integers froming an increasing G.P. whose common ...

    Text Solution

    |

  6. If sum(r=1)^(n)r(r+1)+sum(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b...

    Text Solution

    |

  7. Let a, x, b in A.P, a, y, b in GP a, z, b in HP where a and b are disn...

    Text Solution

    |

  8. If S(n) denotes the sum to n terms of the series (1 le n le 9)1 + 22 +...

    Text Solution

    |

  9. If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0) , then which one...

    Text Solution

    |

  10. If tan1^(@).tan2^(@).tan^(@)"………tan89^(@) = 4x^(2) + 2x then the value...

    Text Solution

    |

  11. (sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

    Text Solution

    |

  12. Number of different paths of shortest distance from A and B to in the ...

    Text Solution

    |

  13. Line x/a+y/b=1 cuts the coordinate axes at A(a ,0)a n dB(0,b) and the ...

    Text Solution

    |

  14. Consider the equation y-y1=m(x-x1) . If m and x1 are fixed and differe...

    Text Solution

    |

  15. If y= 3x+c is a tangent to the circle x^2+y^2-2x-4y-5=0 , then c is eq...

    Text Solution

    |

  16. Let three quadratic equations ax^(2) - 2bx + c = 0, bx^(2) - 2 cx + a...

    Text Solution

    |

  17. For the equation x + y + z +omega= 19, the number of positive integral...

    Text Solution

    |

  18. Let solution of inequality (16^((1)/(x)))/2^(x+3)gt1 is (-oo, a) cup (...

    Text Solution

    |

  19. If a, b and c are positive real and a = 2b + 3c, then the equation ax^...

    Text Solution

    |

  20. For the equation 1 + log(x) ((4 - x)/(10)) = (log(10)(log(10)p) - 1)lo...

    Text Solution

    |