Home
Class 11
PHYSICS
If y=2x^(3)+3x^(2)+6x+1, then (dy)/(dx) ...

If `y=2x^(3)+3x^(2)+6x+1`, then `(dy)/(dx)` will be `-`

A

`6(x^(2)+x+1)`

B

`6(x^(2)+x_2)`

C

`6x^(2)+3x`

D

`(x^(2)+6x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = 2x^3 + 3x^2 + 6x + 1 \), we will follow these steps: ### Step 1: Identify the function We start with the function given: \[ y = 2x^3 + 3x^2 + 6x + 1 \] ### Step 2: Apply the power rule for differentiation The power rule states that if \( y = x^n \), then \( \frac{dy}{dx} = n \cdot x^{n-1} \). We will differentiate each term in the function separately. 1. For \( 2x^3 \): \[ \frac{d}{dx}(2x^3) = 2 \cdot 3x^{3-1} = 6x^2 \] 2. For \( 3x^2 \): \[ \frac{d}{dx}(3x^2) = 3 \cdot 2x^{2-1} = 6x \] 3. For \( 6x \): \[ \frac{d}{dx}(6x) = 6 \cdot 1 = 6 \] 4. For the constant \( 1 \): \[ \frac{d}{dx}(1) = 0 \] ### Step 3: Combine the derivatives Now, we can combine all the derivatives we found: \[ \frac{dy}{dx} = 6x^2 + 6x + 6 + 0 \] This simplifies to: \[ \frac{dy}{dx} = 6x^2 + 6x + 6 \] ### Step 4: Factor the expression (if necessary) We can factor out the common term: \[ \frac{dy}{dx} = 6(x^2 + x + 1) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 6x^2 + 6x + 6 \]

To find the derivative of the function \( y = 2x^3 + 3x^2 + 6x + 1 \), we will follow these steps: ### Step 1: Identify the function We start with the function given: \[ y = 2x^3 + 3x^2 + 6x + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO 7 PHYSICS|4 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP 8 PHYSICS|7 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

If y=[2x^3+3][2x^-3+1] , then find (dy)/(dx) .

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)

y=(5x)^(3cos 2x) then find (dy)/(dx) .

If y=[3x+2][2x-1] , then find (dy)/(dx) .

If y=3x^2+2x , then find dy//dx .

If y=6 x^(5)-4x^(4)+2x^(2)+3x+2 , then find (dy)/(dx) at x=-1.

If y=sin^2(x^3) , then dy/dx=

If y=sin^2(x^3) , then dy/dx=