Home
Class 11
PHYSICS
If f(x)=(x+1)/(x-1) then the value of f(...

If `f(x)=(x+1)/(x-1)` then the value of `f(f(f(x)))` is `:`

A

`(x-1)/(x+1)`

B

1

C

`(x+1)/(x-1)`

D

`x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(f(f(x))) \) where \( f(x) = \frac{x+1}{x-1} \), we will follow these steps: ### Step 1: Find \( f(f(x)) \) 1. **Start with the function**: \[ f(x) = \frac{x+1}{x-1} \] 2. **Substitute \( f(x) \) into itself**: \[ f(f(x)) = f\left(\frac{x+1}{x-1}\right) \] 3. **Replace \( x \) in the function with \( \frac{x+1}{x-1} \)**: \[ f\left(\frac{x+1}{x-1}\right) = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1} \] 4. **Simplify the numerator**: \[ \frac{x+1}{x-1} + 1 = \frac{x+1 + (x-1)}{x-1} = \frac{2x}{x-1} \] 5. **Simplify the denominator**: \[ \frac{x+1}{x-1} - 1 = \frac{x+1 - (x-1)}{x-1} = \frac{2}{x-1} \] 6. **Combine the results**: \[ f(f(x)) = \frac{\frac{2x}{x-1}}{\frac{2}{x-1}} = x \] ### Step 2: Find \( f(f(f(x))) \) 1. **Now find \( f(f(f(x))) \)**: \[ f(f(f(x))) = f(f(x)) \] 2. **Since we found that \( f(f(x)) = x \)**: \[ f(f(f(x))) = f(x) \] 3. **Substituting back into the original function**: \[ f(f(f(x))) = f(x) = \frac{x+1}{x-1} \] ### Final Result Thus, the value of \( f(f(f(x))) \) is: \[ \boxed{\frac{x+1}{x-1}} \]

To find the value of \( f(f(f(x))) \) where \( f(x) = \frac{x+1}{x-1} \), we will follow these steps: ### Step 1: Find \( f(f(x)) \) 1. **Start with the function**: \[ f(x) = \frac{x+1}{x-1} \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO 7 PHYSICS|4 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP 8 PHYSICS|7 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x) = x/(x-1)=1/y then the value of f(y) is

If f(x)=1-1/x then write the value of f(f(1/x))dot

If f(x) = x - (1)/(x) , then the value of f(x) + f((1)/(x)) is :

If f(x)=(x-|x|)/(|x|) , then value of f(-1) is

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is