Home
Class 11
PHYSICS
Vector vec(A)=hat(i)+hat(j)-2hat(k) and ...

Vector `vec(A)=hat(i)+hat(j)-2hat(k)` and `vec(B)=3hat(i)+3hat(j)-6hat(k)` are `:`

A

Parallel

B

Antiparallel

C

Perpendicular

D

at acute angle with each other

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between the vectors \(\vec{A} = \hat{i} + \hat{j} - 2\hat{k}\) and \(\vec{B} = 3\hat{i} + 3\hat{j} - 6\hat{k}\), we will find the angle between them using the dot product formula. ### Step-by-Step Solution: 1. **Identify the vectors**: \[ \vec{A} = \hat{i} + \hat{j} - 2\hat{k} \] \[ \vec{B} = 3\hat{i} + 3\hat{j} - 6\hat{k} \] 2. **Calculate the dot product \(\vec{A} \cdot \vec{B}\)**: \[ \vec{A} \cdot \vec{B} = (1)(3) + (1)(3) + (-2)(-6) \] \[ = 3 + 3 + 12 = 18 \] 3. **Calculate the magnitudes of \(\vec{A}\) and \(\vec{B}\)**: - Magnitude of \(\vec{A}\): \[ |\vec{A}| = \sqrt{1^2 + 1^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] - Magnitude of \(\vec{B}\): \[ |\vec{B}| = \sqrt{3^2 + 3^2 + (-6)^2} = \sqrt{9 + 9 + 36} = \sqrt{54} = 3\sqrt{6} \] 4. **Use the dot product to find \(\cos \theta\)**: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] \[ = \frac{18}{\sqrt{6} \cdot 3\sqrt{6}} = \frac{18}{3 \cdot 6} = \frac{18}{18} = 1 \] 5. **Determine the angle \(\theta\)**: Since \(\cos \theta = 1\), we have: \[ \theta = 0^\circ \] 6. **Conclusion**: The angle between the vectors is \(0^\circ\), which means the vectors are parallel. ### Final Answer: The vectors \(\vec{A}\) and \(\vec{B}\) are **parallel**.

To determine the relationship between the vectors \(\vec{A} = \hat{i} + \hat{j} - 2\hat{k}\) and \(\vec{B} = 3\hat{i} + 3\hat{j} - 6\hat{k}\), we will find the angle between them using the dot product formula. ### Step-by-Step Solution: 1. **Identify the vectors**: \[ \vec{A} = \hat{i} + \hat{j} - 2\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 11 physics|6 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP 8 PHYSICS|7 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

If vec(A) and vec(B) are perpendicular Vectors and vector vec(A)= 5hat(i)+7hat(j)-3hat(k) and vec(B)= 2hat(i)+2hat(j)-ahat(k) . The value of a is

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

A unit vector in the dirction of resultant vector of vec(A)= -2hat(i)+3hat(j)+hat(k) and vec(B)= hat(i)+2hat(j)-4hat(k) is

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the scalar and vector products of two vectors vec(A)=(3hat(i)-4hat(j)+5hat(k)) "and" vec(B)=(-2hat(i)+hat(j)-3hat(k)) .