Home
Class 11
PHYSICS
If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q...

If `vec(P)=hat(i)+hat(j)-hat(k)` and `vec(Q)=hat(i)-hat(j)+hat(k)`, then unit vector along `(vec(P)-vec(Q))` is `:`

A

`(1)/(sqrt(2))hat(i)-(1)/(2)hat(k)`

B

`(sqrt(2)hat(j)-sqrt(2)hat(k))/(2)`

C

`(hat(j)-hat(k))/(2sqrt(2))`

D

`(2hat(j)-2hat(k))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector along the vector \( \vec{P} - \vec{Q} \), we can follow these steps: ### Step 1: Write down the vectors We are given: \[ \vec{P} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{Q} = \hat{i} - \hat{j} + \hat{k} \] ### Step 2: Calculate \( \vec{P} - \vec{Q} \) Now, we will subtract \( \vec{Q} \) from \( \vec{P} \): \[ \vec{P} - \vec{Q} = (\hat{i} + \hat{j} - \hat{k}) - (\hat{i} - \hat{j} + \hat{k}) \] Distributing the negative sign: \[ = \hat{i} + \hat{j} - \hat{k} - \hat{i} + \hat{j} - \hat{k} \] Now, combine like terms: - The \( \hat{i} \) terms: \( \hat{i} - \hat{i} = 0 \) - The \( \hat{j} \) terms: \( \hat{j} + \hat{j} = 2\hat{j} \) - The \( \hat{k} \) terms: \( -\hat{k} - \hat{k} = -2\hat{k} \) Thus, we have: \[ \vec{P} - \vec{Q} = 2\hat{j} - 2\hat{k} \] ### Step 3: Simplify the result We can factor out a 2: \[ \vec{P} - \vec{Q} = 2(\hat{j} - \hat{k}) \] ### Step 4: Find the magnitude of \( \vec{P} - \vec{Q} \) The magnitude of the vector \( \vec{P} - \vec{Q} \) is given by: \[ |\vec{P} - \vec{Q}| = |2(\hat{j} - \hat{k})| = 2 \cdot |\hat{j} - \hat{k}| \] To find \( |\hat{j} - \hat{k}| \): \[ |\hat{j} - \hat{k}| = \sqrt{(0)^2 + (1)^2 + (-1)^2} = \sqrt{0 + 1 + 1} = \sqrt{2} \] Thus, \[ |\vec{P} - \vec{Q}| = 2 \cdot \sqrt{2} \] ### Step 5: Find the unit vector The unit vector \( \hat{z} \) in the direction of \( \vec{P} - \vec{Q} \) is given by: \[ \hat{z} = \frac{\vec{P} - \vec{Q}}{|\vec{P} - \vec{Q}|} = \frac{2(\hat{j} - \hat{k})}{2\sqrt{2}} = \frac{\hat{j} - \hat{k}}{\sqrt{2}} \] ### Final Answer Thus, the unit vector along \( \vec{P} - \vec{Q} \) is: \[ \hat{z} = \frac{\hat{j} - \hat{k}}{\sqrt{2}} \]

To find the unit vector along the vector \( \vec{P} - \vec{Q} \), we can follow these steps: ### Step 1: Write down the vectors We are given: \[ \vec{P} = \hat{i} + \hat{j} - \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 10 physics|8 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise Dpp no 11 physics|6 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE ENGLISH|Exercise DPP 8 PHYSICS|7 Videos
  • CURRENT ELECTRICITY

    RESONANCE ENGLISH|Exercise Exercise|53 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE ENGLISH|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?