Home
Class 12
MATHS
If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n...

If `lim_(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2` where `"n" epsilonN` then the number of integers in the range of `x` is (a) 0 (b) 2 (c) 3 (d) 1

A

`0`

B

`2`

C

`3`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the given expression: \[ \lim_{n \to \infty} \frac{n \cdot 2^n}{n(3x - 4)^n + n \cdot 2^{n+1} + 2^n} = \frac{1}{2} \] ### Step 1: Simplify the Expression We can simplify the limit by dividing the numerator and the denominator by \(n \cdot 2^n\): \[ \lim_{n \to \infty} \frac{1}{\frac{n(3x - 4)^n}{n \cdot 2^n} + \frac{n \cdot 2^{n+1}}{n \cdot 2^n} + \frac{2^n}{n \cdot 2^n}} \] This simplifies to: \[ \lim_{n \to \infty} \frac{1}{\frac{(3x - 4)^n}{2^n} + 2 + \frac{1}{n}} \] ### Step 2: Analyze the Limit As \(n\) approaches infinity, the term \(\frac{1}{n}\) approaches 0. Thus, we have: \[ \lim_{n \to \infty} \frac{1}{\frac{(3x - 4)^n}{2^n} + 2} \] ### Step 3: Determine the Dominance of Terms For the limit to equal \(\frac{1}{2}\), we need: \[ \frac{(3x - 4)^n}{2^n} \to 0 \] This occurs when \(|3x - 4| < 2\). ### Step 4: Set Up the Inequality We set up the inequality: \[ -2 < 3x - 4 < 2 \] ### Step 5: Solve the Inequality 1. Adding 4 to all parts: \[ 2 < 3x < 6 \] 2. Dividing by 3: \[ \frac{2}{3} < x < 2 \] ### Step 6: Identify Integer Solutions The range \(\frac{2}{3} < x < 2\) translates to: - The lower bound is approximately \(0.67\). - The upper bound is \(2\). The only integer value that lies within this range is \(1\). ### Conclusion Thus, the number of integers in the range of \(x\) is: \[ \boxed{1} \]

To solve the limit problem, we start with the given expression: \[ \lim_{n \to \infty} \frac{n \cdot 2^n}{n(3x - 4)^n + n \cdot 2^{n+1} + 2^n} = \frac{1}{2} \] ### Step 1: Simplify the Expression We can simplify the limit by dividing the numerator and the denominator by \(n \cdot 2^n\): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

If lim(n->oo)(n*3^n)/(n(x-2)^n +n*3^(n+1)-3^n) = 1/3 then the range of x is (where n epsilon N )

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

Lt_(nrarroo)((n!)/n^n)^(1/n)= (A) e^(-2) (B) e^(-1) (C) e^3 (D) e

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  2. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  3. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  4. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  5. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  6. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  7. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  8. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  9. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  10. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  11. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  12. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  13. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  14. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  15. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  16. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  17. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  18. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |

  19. f(x)=lim(mrarroo){lim(nrarroo)cos^(2m)n!pix} then

    Text Solution

    |

  20. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |