Home
Class 12
MATHS
If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3ta...

If `(tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y`. Then which of the following may be true (a)`(x+y)/(tan1)=-2` (b)`(tan^(-1)x)/(1-tan^(-1)y)=2` (c)`(tan^(-1)x)/(1-tan^(-1)y)=2` (d)`(x+y)/(cot1)=1`

A

`(x+y)/(tan1)=-2`

B

`(tan^(-1)x)/(1-tan^(-1)y)=2`

C

`(x+y)/(tan1)=2`

D

`(x+y)/(cot1)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation \( (\tan^{-1} x)^3 + (\tan^{-1} y)^3 = 1 - 3 \tan^{-1} x \tan^{-1} y \), we can use the identity for the sum of cubes. ### Step-by-Step Solution: 1. **Identify the Components**: We have \( a = \tan^{-1} x \) and \( b = \tan^{-1} y \). The equation can be rewritten as: \[ a^3 + b^3 = 1 - 3ab \] 2. **Use the Sum of Cubes Identity**: The identity states that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] We can rewrite the left side using this identity: \[ (a + b)(a^2 - ab + b^2) = 1 - 3ab \] 3. **Rearranging the Equation**: Rearranging gives us: \[ (a + b)(a^2 - ab + b^2) + 3ab = 1 \] 4. **Using Another Identity**: We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Thus, we can substitute \( a^2 - ab + b^2 \) as: \[ (a + b)^2 - 3ab \] Therefore, our equation becomes: \[ (a + b)((a + b)^2 - 3ab) + 3ab = 1 \] 5. **Setting Up the Final Equation**: Let \( s = a + b \) and \( p = ab \). The equation simplifies to: \[ s(s^2 - 3p) + 3p = 1 \] This leads to: \[ s^3 - 3sp + 3p = 1 \] 6. **Finding \( a \) and \( b \)**: From the original equation, we can also use the identity: \[ a + b + c = 0 \] where \( c = -1 \). Thus: \[ a + b - 1 = 0 \Rightarrow a + b = 1 \] 7. **Finding Values**: Since \( a = \tan^{-1} x \) and \( b = \tan^{-1} y \), we have: \[ \tan^{-1} x + \tan^{-1} y = 1 \] Taking the tangent of both sides gives: \[ \frac{x + y}{1 - xy} = \tan(1) \] 8. **Solving for \( x + y \)**: Rearranging gives: \[ x + y = \tan(1)(1 - xy) \] 9. **Conclusion**: If we assume \( x = y = -\tan(1) \), then: \[ x + y = -2\tan(1) \] Therefore: \[ \frac{x + y}{\tan(1)} = -2 \] ### Final Answer: Thus, the correct option is: **(a)** \( \frac{x+y}{\tan(1)} = -2 \)

To solve the given equation \( (\tan^{-1} x)^3 + (\tan^{-1} y)^3 = 1 - 3 \tan^{-1} x \tan^{-1} y \), we can use the identity for the sum of cubes. ### Step-by-Step Solution: 1. **Identify the Components**: We have \( a = \tan^{-1} x \) and \( b = \tan^{-1} y \). The equation can be rewritten as: \[ a^3 + b^3 = 1 - 3ab ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  2. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  3. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  4. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  5. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  6. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  7. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  8. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  9. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  10. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  11. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  12. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  13. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  14. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  15. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  16. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |

  17. f(x)=lim(mrarroo){lim(nrarroo)cos^(2m)n!pix} then

    Text Solution

    |

  18. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  19. Q. For every integer n, leta(n) and b(n) be real numbers. Let functio...

    Text Solution

    |

  20. Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2,...

    Text Solution

    |