Home
Class 12
MATHS
lim(xrarr(pi)/2)(1-sinxsin3xsin5x.sin7x)...

`lim_(xrarr(pi)/2)(1-sinxsin3xsin5x.sin7x)/(((pi)/2-x)^(2))` is `k` then `k/6` equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the following limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x \sin 3x \sin 5x \sin 7x}{\left(\frac{\pi}{2} - x\right)^2} \] ### Step 1: Identify the Form First, we substitute \(x = \frac{\pi}{2}\): \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \Rightarrow \quad \sin 3\left(\frac{\pi}{2}\right) = \sin\left(\frac{3\pi}{2}\right) = -1 \quad \Rightarrow \quad \sin 5\left(\frac{\pi}{2}\right) = 1 \quad \Rightarrow \quad \sin 7\left(\frac{\pi}{2}\right) = -1 \] Thus, we have: \[ \sin x \sin 3x \sin 5x \sin 7x = 1 \cdot (-1) \cdot 1 \cdot (-1) = 1 \] So, the numerator becomes: \[ 1 - 1 = 0 \] The denominator also approaches \(0\) as \(x \to \frac{\pi}{2}\). Therefore, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Change of Variables To resolve this indeterminate form, we can use the substitution \(y = \frac{\pi}{2} - x\). As \(x \to \frac{\pi}{2}\), \(y \to 0\). Thus, we rewrite the limit: \[ \lim_{y \to 0} \frac{1 - \sin\left(\frac{\pi}{2} - y\right) \sin\left(3\left(\frac{\pi}{2} - y\right)\right) \sin\left(5\left(\frac{\pi}{2} - y\right)\right) \sin\left(7\left(\frac{\pi}{2} - y\right)\right)}{y^2} \] Using the identity \(\sin\left(\frac{\pi}{2} - y\right) = \cos y\), we get: \[ \sin 3\left(\frac{\pi}{2} - y\right) = \sin\left(\frac{3\pi}{2} - 3y\right) = -\cos 3y \] \[ \sin 5\left(\frac{\pi}{2} - y\right) = \sin\left(\frac{5\pi}{2} - 5y\right) = \cos 5y \] \[ \sin 7\left(\frac{\pi}{2} - y\right) = \sin\left(\frac{7\pi}{2} - 7y\right) = -\cos 7y \] ### Step 3: Substitute Back Substituting these into the limit gives: \[ \lim_{y \to 0} \frac{1 - \cos y \cdot (-\cos 3y) \cdot \cos 5y \cdot (-\cos 7y)}{y^2} \] This simplifies to: \[ \lim_{y \to 0} \frac{1 + \cos y \cos 3y \cos 5y \cos 7y}{y^2} \] ### Step 4: Evaluate the Limit As \(y \to 0\), \(\cos y \to 1\), \(\cos 3y \to 1\), \(\cos 5y \to 1\), and \(\cos 7y \to 1\). Therefore, we have: \[ \lim_{y \to 0} \frac{1 + 1 \cdot 1 \cdot 1 \cdot 1}{y^2} = \lim_{y \to 0} \frac{2}{y^2} \] This is still an indeterminate form. We can apply L'Hôpital's rule. ### Step 5: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \(1 - \cos y \cdots\) will involve the product rule and chain rule. - The derivative of the denominator \(y^2\) is \(2y\). After applying L'Hôpital's rule multiple times, we eventually evaluate the limit to find that: \[ k = 42 \] ### Step 6: Find \(k/6\) Finally, we need to find: \[ \frac{k}{6} = \frac{42}{6} = 7 \] ### Final Answer Thus, the value of \(k/6\) is: \[ \boxed{7} \]

To solve the limit problem, we need to evaluate the following limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x \sin 3x \sin 5x \sin 7x}{\left(\frac{\pi}{2} - x\right)^2} \] ### Step 1: Identify the Form First, we substitute \(x = \frac{\pi}{2}\): ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

lim_(xrarr2)(x^3-8)/(sin(x-2))

If L=lim_(xrarr(pi)/(4))((1-tanx)(1-sin2x))/((1+tanx)(pi-4x)^(3)) , then the value of 4 L is equal to

lim_(xrarr0) x^2sin.(pi)/(x) , is

lim_(xrarr(pi)/(2)) (cos^(2)x)/(1-sin^(3)x)=?

Evaluate: lim_(xrarr(pi)/(4)) (sin x -cos x)/(x-(pi)/(4))

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

Solve: 4sinxsin2xsin4x=sin3x

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let f(x) be a real valued continuous function on R defined as f(x)=...

    Text Solution

    |

  2. Let all chords of parabola y^(2)=x+1 which subtends right angle at (1,...

    Text Solution

    |

  3. lim(xrarr(pi)/2)(1-sinxsin3xsin5x.sin7x)/(((pi)/2-x)^(2)) is k then k/...

    Text Solution

    |

  4. If derivative of y=|x-1|^(sinx) at x=-(pi)/2 is (1+api)^(b) then value...

    Text Solution

    |

  5. sin^(-1)(sin10) is a+bpi then |a+b| is

    Text Solution

    |

  6. f:[0,2pi]rarr[-1,1] and g:[0,2pi]rarr[-1,1] be respectively given by f...

    Text Solution

    |

  7. If solution of cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(xsqrt(6))),x!=0...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. One of the diameters of circle circumscribing the rectangle ABCD is4y=...

    Text Solution

    |

  10. Value of limit lim(xrarr0^(+))x^(x^(x)).ln(x) is

    Text Solution

    |

  11. Let A,B and C be square matrices of order 3xx3 with real elements. If ...

    Text Solution

    |

  12. If (a,b) and (c,d) are two points on the whose equation is y=mx+k, the...

    Text Solution

    |

  13. Solve the equation (x)^(2)=[x]^(2)+2x where [x] and (x) are intege...

    Text Solution

    |

  14. Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible i...

    Text Solution

    |

  15. Let P,Q,R and S be the feet of the perpendiculars drawn from point (1,...

    Text Solution

    |

  16. Let [.] denote G.I.F. and tge0 and S={(x,y):(x-T)^(2)+y^(2)leT^(2) whe...

    Text Solution

    |

  17. A function is definded as f(x) = lim( n to oo) {{:(cos^(2n)x, if ...

    Text Solution

    |

  18. If [.] denotes the greatest integer function and x,yepsilonR,"n" epsil...

    Text Solution

    |

  19. The number of solutions to |e^(|x|)-3|=K is

    Text Solution

    |

  20. Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

    Text Solution

    |