Home
Class 12
MATHS
Value of limit lim(xrarr0^(+))x^(x^(x))....

Value of limit `lim_(xrarr0^(+))x^(x^(x)).ln(x)` is

A

`1`

B

`0`

C

Does not exists

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^+} x^{x^{x}} \ln(x) \), we can follow these steps: ### Step 1: Analyze \( x^{x^{x}} \) First, we need to evaluate \( x^{x^{x}} \) as \( x \) approaches \( 0^+ \). ### Step 2: Evaluate \( x^{x} \) We know that: \[ x^{x} = e^{x \ln x} \] To find \( \lim_{x \to 0^+} x^{x} \), we need to evaluate \( \lim_{x \to 0^+} x \ln x \). ### Step 3: Find \( \lim_{x \to 0^+} x \ln x \) Using L'Hôpital's Rule, we rewrite: \[ \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} \] This is an indeterminate form \( \frac{-\infty}{\infty} \). ### Step 4: Apply L'Hôpital's Rule Differentiating the numerator and denominator: - Derivative of \( \ln x \) is \( \frac{1}{x} \) - Derivative of \( \frac{1}{x} \) is \( -\frac{1}{x^2} \) Thus, we have: \[ \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0 \] So, \( \lim_{x \to 0^+} x \ln x = 0 \). ### Step 5: Conclude \( \lim_{x \to 0^+} x^{x} \) Since \( \lim_{x \to 0^+} x \ln x = 0 \), we have: \[ \lim_{x \to 0^+} x^{x} = e^0 = 1 \] ### Step 6: Evaluate \( x^{x^{x}} \) Now, substituting back, we find: \[ x^{x^{x}} = x^{1} = x \] ### Step 7: Combine with \( \ln(x) \) Now we evaluate: \[ \lim_{x \to 0^+} x \ln x \] We already established this limit as \( 0 \). ### Step 8: Final Limit Thus, we conclude: \[ \lim_{x \to 0^+} x^{x^{x}} \ln x = \lim_{x \to 0^+} x \ln x = 0 \] ### Final Answer The value of the limit is: \[ \boxed{0} \]

To solve the limit \( \lim_{x \to 0^+} x^{x^{x}} \ln(x) \), we can follow these steps: ### Step 1: Analyze \( x^{x^{x}} \) First, we need to evaluate \( x^{x^{x}} \) as \( x \) approaches \( 0^+ \). ### Step 2: Evaluate \( x^{x} \) We know that: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (x^(2)-3x+2)

The value of lim_(xrarr0^(+)){x^(x)+x^((x^(x)))} is equal to

lim_(xrarr0)(x^3 log x)

Evaluate: lim_(xrarr0)x^x

lim_(xrarr0)x sec x

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0) (x^(2)-x)/(sinx)

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

lim_(xrarr0) (sinx)/(x)= ?

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. about to only mathematics

    Text Solution

    |

  2. One of the diameters of circle circumscribing the rectangle ABCD is4y=...

    Text Solution

    |

  3. Value of limit lim(xrarr0^(+))x^(x^(x)).ln(x) is

    Text Solution

    |

  4. Let A,B and C be square matrices of order 3xx3 with real elements. If ...

    Text Solution

    |

  5. If (a,b) and (c,d) are two points on the whose equation is y=mx+k, the...

    Text Solution

    |

  6. Solve the equation (x)^(2)=[x]^(2)+2x where [x] and (x) are intege...

    Text Solution

    |

  7. Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible i...

    Text Solution

    |

  8. Let P,Q,R and S be the feet of the perpendiculars drawn from point (1,...

    Text Solution

    |

  9. Let [.] denote G.I.F. and tge0 and S={(x,y):(x-T)^(2)+y^(2)leT^(2) whe...

    Text Solution

    |

  10. A function is definded as f(x) = lim( n to oo) {{:(cos^(2n)x, if ...

    Text Solution

    |

  11. If [.] denotes the greatest integer function and x,yepsilonR,"n" epsil...

    Text Solution

    |

  12. The number of solutions to |e^(|x|)-3|=K is

    Text Solution

    |

  13. Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

    Text Solution

    |

  14. If the angles subtended by two chords of a circle at the centre are ...

    Text Solution

    |

  15. Consider the function f(x)={{:(xsin(pi)/(x),"for"xgt0),(0,"for"x=0):} ...

    Text Solution

    |

  16. Which of the following is True?

    Text Solution

    |

  17. lim(xrarrc)f(x) does not exist for wher [.] represent greatest integ...

    Text Solution

    |

  18. f(x)is defined for xge0 & has a continuous derivative. It satisfies f(...

    Text Solution

    |

  19. Let A*B=A^(T)B^(-1) where A^(T) represents transpose of matrix A and B...

    Text Solution

    |

  20. Let A*B=A^(T)B^(-1) where A^(T) represents transpose of matrix A and B...

    Text Solution

    |