Home
Class 12
MATHS
f:RrarrR be twice differentiable functio...

`f:RrarrR` be twice differentiable function satisfying
`f^(")(x)-5f^(')(x)+6f(x)ge0AAxge0` if `f(0)=1`
`f^(')(0)=0`. If `f(x)` satisfies `f(x),f(x)geae^(bx)-be^(ax), Aaxge0`, then find `(a+b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given inequality We start with the inequality: \[ f''(x) - 5f'(x) + 6f(x) \geq 0 \quad \text{for } x \geq 0 \] This can be rewritten as: \[ f''(x) - 3f'(x) - 2f(x) \geq 0 \] ### Step 2: Define a new function Let us define: \[ g(x) = f'(x) - 2f(x) \] Then, we can express \(f''(x)\) in terms of \(g(x)\): \[ f''(x) = g'(x) + 2f'(x) \] Substituting this into our inequality gives: \[ g'(x) + 2f'(x) - 3f'(x) - 2f(x) \geq 0 \] Which simplifies to: \[ g'(x) - f'(x) - 2f(x) \geq 0 \] ### Step 3: Rearranging the inequality We can rearrange the inequality: \[ g'(x) - 3g(x) \geq 0 \] This implies: \[ g'(x) \geq 3g(x) \] ### Step 4: Analyze the function \(g(x)\) The inequality \(g'(x) - 3g(x) \geq 0\) suggests that \(g(x)e^{-3x}\) is a non-decreasing function. Thus, we can write: \[ g(x)e^{-3x} \geq g(0)e^{-3 \cdot 0} = g(0) \] ### Step 5: Calculate \(g(0)\) Now, we need to find \(g(0)\): \[ g(0) = f'(0) - 2f(0) = 0 - 2 \cdot 1 = -2 \] Thus, we have: \[ g(x)e^{-3x} \geq -2 \] ### Step 6: Express \(f(x)\) From \(g(x) = f'(x) - 2f(x)\), we can express \(f'(x)\): \[ f'(x) = g(x) + 2f(x) \] ### Step 7: Solve for \(f(x)\) We can find a lower bound for \(f(x)\) based on the derived inequalities. We know: \[ f(x)e^{-2x} \geq -2e^{3x} \] This implies: \[ f(x) \geq 3e^{2x} - 2e^{3x} \] ### Step 8: Compare with given function The given condition states: \[ f(x) \geq ae^{bx} - be^{ax} \] By comparing, we can identify: - \(a = 3\) - \(b = 2\) ### Step 9: Find \(a + b\) Finally, we find: \[ a + b = 3 + 2 = 5 \] Thus, the final answer is: \[ \boxed{5} \]

To solve the problem, we will follow these steps: ### Step 1: Understand the given inequality We start with the inequality: \[ f''(x) - 5f'(x) + 6f(x) \geq 0 \quad \text{for } x \geq 0 \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0 . Then

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

If f is a real- valued differentiable function satisfying |f(x) - f(y)| le (x-y)^(2) ,x ,y , in R and f(0) =0 then f(1) equals

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. One side of square ABCD is on the line y=2x-17 and other two vertices ...

    Text Solution

    |

  2. let |{:(1+x,x,x^(2)),(x,1+x,x^(2)),(x^(2),x,1+x):}|=(1)/(6)(x-alpha(1)...

    Text Solution

    |

  3. f:RrarrR be twice differentiable function satisfying f^(")(x)-5f^(')...

    Text Solution

    |

  4. Let O be an interior points of triangleABC such that vec(OA)+vec(OB)+3...

    Text Solution

    |

  5. The possible number of ordered triplets (m, n, p) where m,np in N is (...

    Text Solution

    |

  6. Let f (x) be a function defined by f(x)= int(1)^(x) t(t^(2)-3t +2) dt,...

    Text Solution

    |

  7. Given abclt0 and a+b+cgt0. If (|a|)/(a)+(|b|)/(b)+(|c|)/(c)=x, then fi...

    Text Solution

    |

  8. If (1+x+x^(2))^(3n+1)=a(0)+a(1)x+a(2)x^(2)+…a(6n+2)x^(6n+2), then find...

    Text Solution

    |

  9. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  10. Let f(x) = max. {sinx , cosx , (1)/(2)} , then area of the region boun...

    Text Solution

    |

  11. if y=ae^(x)+be^(-3x)+c, then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)...

    Text Solution

    |

  12. If |[a^2+lambda^2,ab+clambda,ca-blambda],[ab-clambda,b^2+lambda^2,bc+a...

    Text Solution

    |

  13. In DeltaABC if (c+a)/(12)=(a+b)/(14)=(b+c)/(18), then find the value o...

    Text Solution

    |

  14. What is the value of 6t such that volume contained inside the planes s...

    Text Solution

    |

  15. The number of ways of seven digit number with distinct digits of the f...

    Text Solution

    |

  16. If the terms of G.P. sqrt(a-x),sqrt(x),sqrt(a+x).. are all in integers...

    Text Solution

    |

  17. P is a variable point on the ellipse x^2/(2a^2)+y^2/(2b^2)=1\ (a gt b)...

    Text Solution

    |

  18. The general solution of |sinx|=cosx is (When ninz) given by

    Text Solution

    |

  19. Distance of point P(-2,3,4) from the line (x+2)/3=(2y+3)/4=(3z+4)/5 me...

    Text Solution

    |

  20. The point P(1,1) is transiated parallel to 2x=yin the first quadrant t...

    Text Solution

    |