Home
Class 12
MATHS
If (1+x+x^(2))^(3n+1)=a(0)+a(1)x+a(2)x^(...

If `(1+x+x^(2))^(3n+1)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(6n+2)x^(6n+2)`, then find the value of `sum_(r=0)^(2n)(a_(3r)-(a_(3r+1)+a_(3r+2))/2)` is______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question step by step. ### Step 1: Understand the Expression We start with the expression: \[ (1 + x + x^2)^{3n + 1} = a_0 + a_1 x + a_2 x^2 + \ldots + a_{6n + 2} x^{6n + 2} \] We need to find: \[ \sum_{r=0}^{2n} \left( a_{3r} - \frac{(a_{3r+1} + a_{3r+2})}{2} \right) \] ### Step 2: Substitute \( x = \omega^2 \) Let \( \omega \) be a primitive cube root of unity, where \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). We substitute \( x = \omega^2 \) into the expression: \[ 1 + \omega^2 + \omega^4 = 1 + \omega^2 + \omega = 0 \] Thus, we have: \[ 0 = (1 + \omega^2 + \omega^4)^{3n + 1} = a_0 + a_1 \omega^2 + a_2 \omega^4 + a_3 + a_4 \omega^2 + a_5 \omega^4 + \ldots + a_{6n + 2} \omega^{6n + 2} \] ### Step 3: Group the Terms We can group the terms based on powers of \( \omega \): \[ 0 = \left( a_0 + a_3 + a_6 + \ldots \right) + \left( a_1 + a_4 + a_7 + \ldots \right) \omega^2 + \left( a_2 + a_5 + a_8 + \ldots \right) \omega^4 \] Since \( 1, \omega^2, \omega^4 \) are linearly independent, each coefficient must equal zero: 1. \( a_0 + a_3 + a_6 + \ldots = 0 \) 2. \( a_1 + a_4 + a_7 + \ldots = 0 \) 3. \( a_2 + a_5 + a_8 + \ldots = 0 \) ### Step 4: Add the Equations Now we add the equations derived from substituting \( x = \omega^2 \) and \( x = \omega \): \[ \sum_{r=0}^{2n} a_{3r} + \sum_{r=0}^{2n} a_{3r+1} + \sum_{r=0}^{2n} a_{3r+2} = 0 \] This implies: \[ \sum_{r=0}^{2n} a_{3r} = -\frac{1}{2} \left( \sum_{r=0}^{2n} a_{3r+1} + \sum_{r=0}^{2n} a_{3r+2} \right) \] ### Step 5: Substitute Back into the Original Expression Now we substitute this back into our original expression: \[ \sum_{r=0}^{2n} \left( a_{3r} - \frac{(a_{3r+1} + a_{3r+2})}{2} \right) = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the expression given in the question step by step. ### Step 1: Understand the Expression We start with the expression: \[ (1 + x + x^2)^{3n + 1} = a_0 + a_1 x + a_2 x^2 + \ldots + a_{6n + 2} x^{6n + 2} \] We need to find: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let f (x) be a function defined by f(x)= int(1)^(x) t(t^(2)-3t +2) dt,...

    Text Solution

    |

  2. Given abclt0 and a+b+cgt0. If (|a|)/(a)+(|b|)/(b)+(|c|)/(c)=x, then fi...

    Text Solution

    |

  3. If (1+x+x^(2))^(3n+1)=a(0)+a(1)x+a(2)x^(2)+…a(6n+2)x^(6n+2), then find...

    Text Solution

    |

  4. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  5. Let f(x) = max. {sinx , cosx , (1)/(2)} , then area of the region boun...

    Text Solution

    |

  6. if y=ae^(x)+be^(-3x)+c, then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)...

    Text Solution

    |

  7. If |[a^2+lambda^2,ab+clambda,ca-blambda],[ab-clambda,b^2+lambda^2,bc+a...

    Text Solution

    |

  8. In DeltaABC if (c+a)/(12)=(a+b)/(14)=(b+c)/(18), then find the value o...

    Text Solution

    |

  9. What is the value of 6t such that volume contained inside the planes s...

    Text Solution

    |

  10. The number of ways of seven digit number with distinct digits of the f...

    Text Solution

    |

  11. If the terms of G.P. sqrt(a-x),sqrt(x),sqrt(a+x).. are all in integers...

    Text Solution

    |

  12. P is a variable point on the ellipse x^2/(2a^2)+y^2/(2b^2)=1\ (a gt b)...

    Text Solution

    |

  13. The general solution of |sinx|=cosx is (When ninz) given by

    Text Solution

    |

  14. Distance of point P(-2,3,4) from the line (x+2)/3=(2y+3)/4=(3z+4)/5 me...

    Text Solution

    |

  15. The point P(1,1) is transiated parallel to 2x=yin the first quadrant t...

    Text Solution

    |

  16. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  17. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  18. The extremities of the diagonal of a rectangle are (-4, 4) and (6,-1)....

    Text Solution

    |

  19. In a city no two persons have identical set of teeth and there is n...

    Text Solution

    |

  20. The number of values of k for which the system of equations: kx+(3k+...

    Text Solution

    |