Home
Class 12
MATHS
if y=ae^(x)+be^(-3x)+c, then the value o...

if `y=ae^(x)+be^(-3x)+c`, then the value of `((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \[ \frac{\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2}}{\frac{dy}{dx}} \] given that \[ y = ae^x + be^{-3x} + c. \] ### Step 1: Find the first derivative \( \frac{dy}{dx} \) We start by differentiating \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}(ae^x + be^{-3x} + c). \] Using the chain rule and the fact that the derivative of \( e^x \) is \( e^x \) and the derivative of \( e^{-3x} \) is \( -3e^{-3x} \): \[ \frac{dy}{dx} = a e^x - 3b e^{-3x}. \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(a e^x - 3b e^{-3x}). \] Differentiating again: \[ \frac{d^2y}{dx^2} = a e^x + 9b e^{-3x}. \] ### Step 3: Find the third derivative \( \frac{d^3y}{dx^3} \) Next, we differentiate \( \frac{d^2y}{dx^2} \): \[ \frac{d^3y}{dx^3} = \frac{d}{dx}(a e^x + 9b e^{-3x}). \] Differentiating again: \[ \frac{d^3y}{dx^3} = a e^x - 27b e^{-3x}. \] ### Step 4: Substitute into the expression Now we substitute \( \frac{d^3y}{dx^3} \) and \( \frac{d^2y}{dx^2} \) into the original expression: \[ \frac{\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2}}{\frac{dy}{dx}} = \frac{(a e^x - 27b e^{-3x}) + 2(a e^x + 9b e^{-3x})}{(a e^x - 3b e^{-3x})}. \] ### Step 5: Simplify the numerator Combine the terms in the numerator: \[ = \frac{a e^x - 27b e^{-3x} + 2a e^x + 18b e^{-3x}}{a e^x - 3b e^{-3x}}. \] This simplifies to: \[ = \frac{(3a e^x - 9b e^{-3x})}{(a e^x - 3b e^{-3x})}. \] ### Step 6: Cancel common factors Now we can see that we can factor out 3 from the numerator: \[ = 3 \cdot \frac{(a e^x - 3b e^{-3x})}{(a e^x - 3b e^{-3x})}. \] Since the numerator and denominator are the same, they cancel out: \[ = 3. \] ### Final Answer Thus, the value of the expression is: \[ \boxed{3}. \]

To solve the problem, we need to find the value of the expression \[ \frac{\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2}}{\frac{dy}{dx}} \] given that ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Find the order of the differential equation (d^(3)y)/(dx^(3)) + 2((d^(2)y)/(dx^(2)))^(2) + (dy)/(dx) + y = 0

Find the degree of the differential equation ((d^(3)y)/(dx^(3))) + 2 ((d^(2)y)/(dx^(2))) + (dy)/(dx) + y = 0 .

If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2) is

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, then the value of y ^(4) +y^(3) (d^(2)y)/(dx ^(2)) is

If y=log(1+cosx) , prove that (d^3y)/(dx^3)+(d^2y)/(dx^2)dot(dy)/(dx)=0 .

The degree of the potential equation ((d^(2)y)/(dx^(2)))^(2)+((dy)/(dx))^(2)=x sin ((dy)/(dx))"is

The order and degree of differential equation: ((d^(3)y)/(dx^(3)))^(2)-3(d^(2)y)/(dx^(2))+2((dy)/(dx))^(4)=y^(4)"are"

Number of values of m in N for which y=e^(m x) is a solution of the differential equation (d^3y)/(dx^3)-3(d^2y)/(dx^2)-4(dy)/(dx)+12 y=0 (a) 0 (b) 1 (c) 2 (d) More than 2

Number of values of m in N for which y=e^(m x) is a solution of the differential equation (d^3y)/(dx^3)-3(d^2y)/(dx^2)-4(dy)/(dx)+12 y=0 (a) 0 (b) 1 (c) 2 (d) More than 2

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  2. Let f(x) = max. {sinx , cosx , (1)/(2)} , then area of the region boun...

    Text Solution

    |

  3. if y=ae^(x)+be^(-3x)+c, then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)...

    Text Solution

    |

  4. If |[a^2+lambda^2,ab+clambda,ca-blambda],[ab-clambda,b^2+lambda^2,bc+a...

    Text Solution

    |

  5. In DeltaABC if (c+a)/(12)=(a+b)/(14)=(b+c)/(18), then find the value o...

    Text Solution

    |

  6. What is the value of 6t such that volume contained inside the planes s...

    Text Solution

    |

  7. The number of ways of seven digit number with distinct digits of the f...

    Text Solution

    |

  8. If the terms of G.P. sqrt(a-x),sqrt(x),sqrt(a+x).. are all in integers...

    Text Solution

    |

  9. P is a variable point on the ellipse x^2/(2a^2)+y^2/(2b^2)=1\ (a gt b)...

    Text Solution

    |

  10. The general solution of |sinx|=cosx is (When ninz) given by

    Text Solution

    |

  11. Distance of point P(-2,3,4) from the line (x+2)/3=(2y+3)/4=(3z+4)/5 me...

    Text Solution

    |

  12. The point P(1,1) is transiated parallel to 2x=yin the first quadrant t...

    Text Solution

    |

  13. A function f from integers to integers is defined as f(x)={n+3, n in ...

    Text Solution

    |

  14. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  15. The extremities of the diagonal of a rectangle are (-4, 4) and (6,-1)....

    Text Solution

    |

  16. In a city no two persons have identical set of teeth and there is n...

    Text Solution

    |

  17. The number of values of k for which the system of equations: kx+(3k+...

    Text Solution

    |

  18. If ain[-20, 0], find the probability that the graph of the function y=...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |