Home
Class 12
MATHS
If a, b, c are distinct odd integers and...

If `a, b, c` are distinct odd integers and `omega` is non real cube root of unity, then minimum value of `| a omega^2 + b+ comega|`, is

A

`0`

B

`3`

C

`1`

D

`2sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \( | a \omega^2 + b + c \omega | \), where \( a, b, c \) are distinct odd integers and \( \omega \) is a non-real cube root of unity. ### Step-by-step Solution: 1. **Identify the values of \( \omega \) and \( \omega^2 \)**: \[ \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \quad \omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] 2. **Substitute \( \omega \) and \( \omega^2 \) into the expression**: \[ a \omega^2 + b + c \omega = a \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i\right) + b + c \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i\right) \] This simplifies to: \[ = -\frac{a}{2} - \frac{c}{2} + b + \left(-\frac{a \sqrt{3}}{2} + \frac{c \sqrt{3}}{2}\right)i \] 3. **Combine real and imaginary parts**: The real part is: \[ -\frac{a + c}{2} + b \] The imaginary part is: \[ \frac{\sqrt{3}}{2} (c - a) \] Thus, we have: \[ | a \omega^2 + b + c \omega | = \sqrt{\left(-\frac{a + c}{2} + b\right)^2 + \left(\frac{\sqrt{3}}{2} (c - a)\right)^2} \] 4. **Simplify the expression**: \[ = \sqrt{\left(-\frac{a + c}{2} + b\right)^2 + \frac{3}{4} (c - a)^2} \] 5. **Set up for minimization**: We need to find the minimum value of: \[ \sqrt{\frac{1}{4} (a + c - 2b)^2 + \frac{3}{4} (c - a)^2} \] 6. **Choose distinct odd integers**: To minimize the expression, we can choose the smallest distinct odd integers. Let's take: \[ a = 1, \quad b = 3, \quad c = 5 \] 7. **Calculate the expression**: Substitute \( a, b, c \) into the expression: \[ = \sqrt{\frac{1}{4} (1 + 5 - 2 \cdot 3)^2 + \frac{3}{4} (5 - 1)^2} \] \[ = \sqrt{\frac{1}{4} (6 - 6)^2 + \frac{3}{4} (4)^2} \] \[ = \sqrt{0 + \frac{3}{4} \cdot 16} \] \[ = \sqrt{12} = 2\sqrt{3} \] ### Final Answer: The minimum value of \( | a \omega^2 + b + c \omega | \) is \( 2\sqrt{3} \).

To solve the problem, we need to find the minimum value of \( | a \omega^2 + b + c \omega | \), where \( a, b, c \) are distinct odd integers and \( \omega \) is a non-real cube root of unity. ### Step-by-step Solution: 1. **Identify the values of \( \omega \) and \( \omega^2 \)**: \[ \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i, \quad \omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are distinct integers and omega(ne 1) is a cube root of unity, then the minimum value of |a+bomega+comega^(2)|+|a+bomega^(2)+comega| is

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then omega + omega^(2)= …..

a ,b , c are integers, not all simultaneously equal, and omega is cube root of unity (omega!=1) , then minimum value of |a+bomega+comega^2| is 0 b. 1 c. (sqrt(3))/2 d. 1/2

If omega is a cube root of unity then find the value of sin((omega^(10)+omega^(23))pi -pi/4)

If omega is a cube root of unity then find the value of sin((omega^(10)+omega^(23))pi-pi/4)

Statement-1: If a,b,c are distinct real number and omega( ne 1) is a cube root of unity, then |(a+bomega+comega^(2))/(aomega^(2)+b+comega)|=1 Statement-2: For any non-zero complex number z,|z / bar z)|=1

If 1 , omega, omega^(2) are cube roots of unity then the value of (3 + 5omega+3omega^(2))^(3) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Area bounded by the region R-={(x,y):y^(2)lexle|y|} is

    Text Solution

    |

  2. The range of the function, f(x)= (1+sec^-1x) (1 + cos^-1 x) is

    Text Solution

    |

  3. If a, b, c are distinct odd integers and omega is non real cube root o...

    Text Solution

    |

  4. Consider the following equation in x and y: (x-2y-1)^2 + (4x+3y-4)^2 +...

    Text Solution

    |

  5. If f(n)=int(0)^(2015)(e^(x))/(1+x^(n))dx, then find the value of lim(n...

    Text Solution

    |

  6. The statement ~(~prarrq) is equivalent to (A) pvv~q ...

    Text Solution

    |

  7. The median of a set of nine distinct observations is 20.5. If each of ...

    Text Solution

    |

  8. In DeltaABC, if AB=5cm, BC=13cm and CA=12cm, then the distance to vert...

    Text Solution

    |

  9. A relation R is defined on the set of circles such that "C(1)RC(2)impl...

    Text Solution

    |

  10. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  11. If f(x) is a differentiable function satisfying f^(')(x)lt2 for all xe...

    Text Solution

    |

  12. If A(1,p^(2)),B(0,1) and C(p,0) are the coordinates of three points th...

    Text Solution

    |

  13. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  14. For certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has l...

    Text Solution

    |

  15. If alpha,betagamma are the roots of the equation x^3+px^2+qx+r=0, then...

    Text Solution

    |

  16. In the expansion of (x+y+z)^(20), which of the followign is False?

    Text Solution

    |

  17. Statement 1: The range of f(x)=sin^(2)x-sinx+1 is [3/4,oo). Statemen...

    Text Solution

    |

  18. The function f(x)={ 1-2x+3x^2-4x^3; x!=-1, 1; x=-1} discuss the co...

    Text Solution

    |

  19. Investigate for the maxima and minima of the function f(x)=int1^x[2(t...

    Text Solution

    |

  20. int(-1)^(1) (e^(|x|))/(1+a^(x))dx

    Text Solution

    |