Home
Class 12
MATHS
If alpha,betagamma are the roots of the ...

If `alpha`,`beta``gamma` are the roots of the equation `x^3+px^2+qx+r=0`, then `(1-alpha^2)(1-beta^2)(1-gamma^2)` is equal to
(a)   `(1+q)^2-(p+r)^2`   (b)   `(1+q)^2+(p+r)^2`
(c)   `(1-q)^2+(p-r)^2`   (d)   none of these

A

`(1+q)^(2))-(p+r)^(2)`

B

`(1+q)^(2)+(p+r)^(2)`

C

`(1-q)^(2)+(p-r)^(2)`

D

`(1+r)^(2)-(p+q)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2)\) given that \(\alpha\), \(\beta\), and \(\gamma\) are the roots of the polynomial equation \(x^3 + px^2 + qx + r = 0\). ### Step-by-Step Solution: 1. **Express the polynomial in terms of its roots**: The polynomial can be expressed as: \[ x^3 + px^2 + qx + r = (x - \alpha)(x - \beta)(x - \gamma) \] 2. **Evaluate the polynomial at \(x = 1\)**: Substitute \(x = 1\) into the polynomial: \[ 1^3 + p(1^2) + q(1) + r = 1 + p + q + r \] This gives us: \[ 1 + p + q + r = (1 - \alpha)(1 - \beta)(1 - \gamma) \] 3. **Evaluate the polynomial at \(x = -1\)**: Substitute \(x = -1\) into the polynomial: \[ (-1)^3 + p(-1)^2 + q(-1) + r = -1 + p - q + r \] This gives us: \[ -1 + p - q + r = (-1 - \alpha)(-1 - \beta)(-1 - \gamma) \] Simplifying the right side, we have: \[ (-1 - \alpha)(-1 - \beta)(-1 - \gamma) = -(1 + \alpha)(1 + \beta)(1 + \gamma) \] 4. **Multiply the two results**: Now, we have two equations: \[ (1 + p + q + r)(-1 + p - q + r) = (1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2) \] Using the difference of squares: \[ (1 + q)^2 - (p + r)^2 \] 5. **Final Result**: Therefore, we find that: \[ (1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2) = (1 + q)^2 - (p + r)^2 \] Thus, the answer is: \[ \boxed{(1 + q)^2 - (p + r)^2} \]

To solve the problem, we need to find the value of \((1 - \alpha^2)(1 - \beta^2)(1 - \gamma^2)\) given that \(\alpha\), \(\beta\), and \(\gamma\) are the roots of the polynomial equation \(x^3 + px^2 + qx + r = 0\). ### Step-by-Step Solution: 1. **Express the polynomial in terms of its roots**: The polynomial can be expressed as: \[ x^3 + px^2 + qx + r = (x - \alpha)(x - \beta)(x - \gamma) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta, gamma are the roots of the equation x^(2)=px^(2)+qx-r=0, then the value of sum(alphabeta)/(gamma) is equal to

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha, beta ,gamma are roots of x^(3) + px^(2) + qx + r = 0 then sum (1)/(alpha^(2)) =

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  2. For certain curve y=f(x) satisfying (d^(2)y)/(dx^(2))=6x-4, f(x) has l...

    Text Solution

    |

  3. If alpha,betagamma are the roots of the equation x^3+px^2+qx+r=0, then...

    Text Solution

    |

  4. In the expansion of (x+y+z)^(20), which of the followign is False?

    Text Solution

    |

  5. Statement 1: The range of f(x)=sin^(2)x-sinx+1 is [3/4,oo). Statemen...

    Text Solution

    |

  6. The function f(x)={ 1-2x+3x^2-4x^3; x!=-1, 1; x=-1} discuss the co...

    Text Solution

    |

  7. Investigate for the maxima and minima of the function f(x)=int1^x[2(t...

    Text Solution

    |

  8. int(-1)^(1) (e^(|x|))/(1+a^(x))dx

    Text Solution

    |

  9. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  10. Value of lamda so that point (lamda,lamda^(2)) lies between the lines ...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  13. The number of all subsets of a set containing 2n+1 elements which cont...

    Text Solution

    |

  14. Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^('...

    Text Solution

    |

  15. Sixteen players S(1), S(2), S(3),…,S(16) play in a tournament. Number ...

    Text Solution

    |

  16. If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1...

    Text Solution

    |

  17. Let f(x)={{:(int(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le...

    Text Solution

    |

  18. If x(1),x(2)……..x(n) be n observation and barx be their arithmetic me...

    Text Solution

    |

  19. Write the negative of the compound proposition p vv(~pvvq)

    Text Solution

    |

  20. A line L is perpendicular to the line 3x-4y-7=0 and touches the circle...

    Text Solution

    |