Home
Class 12
MATHS
Statement 1: The range of f(x)=sin^(2)x-...

Statement 1: The range of `f(x)=sin^(2)x-sinx+1` is `[3/4,oo)`.
Statemen 2: The range of `f(x)=x^(2)-x+1` is `[3/4,oo)AAxepsilonR`.

A

Statement 1 is True, Statement 2 is True, Statement -2 is a correct explanation for Statement -1

B

Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statemnt -1

C

Statement -1 is True, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements regarding the functions given. ### Statement 1: **Function:** \( f(x) = \sin^2 x - \sin x + 1 \) **Step 1:** Rewrite the function. \[ f(x) = \sin^2 x - \sin x + 1 \] **Step 2:** Let \( y = \sin x \). Then, we can rewrite the function in terms of \( y \): \[ f(y) = y^2 - y + 1 \] where \( y \) ranges from \(-1\) to \(1\) since \( \sin x \) can take any value in this interval. **Step 3:** Find the range of \( f(y) \). To find the minimum value of \( f(y) \), we can complete the square: \[ f(y) = (y - \frac{1}{2})^2 + \frac{3}{4} \] **Step 4:** Determine the minimum value. The minimum value occurs when \( (y - \frac{1}{2})^2 = 0 \), which gives: \[ f(y)_{\text{min}} = \frac{3}{4} \] **Step 5:** Determine the maximum value. Evaluate \( f(y) \) at the endpoints of the interval: - For \( y = -1 \): \[ f(-1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3 \] - For \( y = 1 \): \[ f(1) = (1)^2 - (1) + 1 = 1 - 1 + 1 = 1 \] Thus, the maximum value of \( f(y) \) is \( 3 \). **Step 6:** Conclusion for Statement 1. The range of \( f(x) \) is: \[ \left[\frac{3}{4}, 3\right] \] This contradicts the statement that the range is \(\left[\frac{3}{4}, \infty\right)\). Therefore, **Statement 1 is false**. ### Statement 2: **Function:** \( g(x) = x^2 - x + 1 \) **Step 1:** Rewrite the function. \[ g(x) = x^2 - x + 1 \] **Step 2:** Complete the square. \[ g(x) = (x - \frac{1}{2})^2 + \frac{3}{4} \] **Step 3:** Determine the minimum value. The minimum value occurs when \( (x - \frac{1}{2})^2 = 0 \): \[ g(x)_{\text{min}} = \frac{3}{4} \] **Step 4:** Determine the maximum value. As \( x \) approaches \( \infty \) or \( -\infty \), \( g(x) \) approaches \( \infty \). **Step 5:** Conclusion for Statement 2. The range of \( g(x) \) is: \[ \left[\frac{3}{4}, \infty\right) \] This confirms that **Statement 2 is true**. ### Final Conclusion: - Statement 1 is false. - Statement 2 is true.

To solve the problem, we will analyze both statements regarding the functions given. ### Statement 1: **Function:** \( f(x) = \sin^2 x - \sin x + 1 \) **Step 1:** Rewrite the function. \[ f(x) = \sin^2 x - \sin x + 1 ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x) =sin^2x-3sinx+2 .

Range of f(x)=sin^(-1)x+x^(2)+4x+1 is :

Range of f(x) = 4^x + 2^x + 1 is

Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

The range of f(x)=(sinpi[x^2-1])/(x^4+1) is f(x) in :

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If alpha,betagamma are the roots of the equation x^3+px^2+qx+r=0, then...

    Text Solution

    |

  2. In the expansion of (x+y+z)^(20), which of the followign is False?

    Text Solution

    |

  3. Statement 1: The range of f(x)=sin^(2)x-sinx+1 is [3/4,oo). Statemen...

    Text Solution

    |

  4. The function f(x)={ 1-2x+3x^2-4x^3; x!=-1, 1; x=-1} discuss the co...

    Text Solution

    |

  5. Investigate for the maxima and minima of the function f(x)=int1^x[2(t...

    Text Solution

    |

  6. int(-1)^(1) (e^(|x|))/(1+a^(x))dx

    Text Solution

    |

  7. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  8. Value of lamda so that point (lamda,lamda^(2)) lies between the lines ...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  11. The number of all subsets of a set containing 2n+1 elements which cont...

    Text Solution

    |

  12. Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^('...

    Text Solution

    |

  13. Sixteen players S(1), S(2), S(3),…,S(16) play in a tournament. Number ...

    Text Solution

    |

  14. If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1...

    Text Solution

    |

  15. Let f(x)={{:(int(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le...

    Text Solution

    |

  16. If x(1),x(2)……..x(n) be n observation and barx be their arithmetic me...

    Text Solution

    |

  17. Write the negative of the compound proposition p vv(~pvvq)

    Text Solution

    |

  18. A line L is perpendicular to the line 3x-4y-7=0 and touches the circle...

    Text Solution

    |

  19. The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))...

    Text Solution

    |

  20. If P(B)=3//4, P(AnnBnnC)=1//3 and P( A nnBnn C )=1//3, t h e nP(BnnC...

    Text Solution

    |