Home
Class 12
MATHS
int(-1)^(1) (e^(|x|))/(1+a^(x))dx...

`int_(-1)^(1) (e^(|x|))/(1+a^(x))dx`

A

`e`

B

`2-e`

C

`e-3`

D

`e-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} \frac{e^{|x|}}{1 + a^x} \, dx \), we can utilize the properties of definite integrals and the evenness of the function involved. Here’s a step-by-step breakdown of the solution: ### Step 1: Analyze the integrand The integrand is \( \frac{e^{|x|}}{1 + a^x} \). Notice that \( |x| \) is an even function, meaning \( |x| = -x \) for \( x < 0 \) and \( |x| = x \) for \( x \geq 0 \). ### Step 2: Split the integral We can split the integral into two parts: \[ \int_{-1}^{1} \frac{e^{|x|}}{1 + a^x} \, dx = \int_{-1}^{0} \frac{e^{|x|}}{1 + a^x} \, dx + \int_{0}^{1} \frac{e^{|x|}}{1 + a^x} \, dx \] ### Step 3: Evaluate the integral from -1 to 0 For \( x \) in the interval \([-1, 0]\), we have \( |x| = -x \). Therefore, the first integral becomes: \[ \int_{-1}^{0} \frac{e^{-x}}{1 + a^x} \, dx \] ### Step 4: Evaluate the integral from 0 to 1 For \( x \) in the interval \([0, 1]\), we have \( |x| = x \). Thus, the second integral is: \[ \int_{0}^{1} \frac{e^{x}}{1 + a^x} \, dx \] ### Step 5: Combine the results Now we have: \[ \int_{-1}^{1} \frac{e^{|x|}}{1 + a^x} \, dx = \int_{-1}^{0} \frac{e^{-x}}{1 + a^x} \, dx + \int_{0}^{1} \frac{e^{x}}{1 + a^x} \, dx \] ### Step 6: Use the property of definite integrals Using the property of symmetry, we can see that: \[ \int_{-1}^{0} \frac{e^{-x}}{1 + a^x} \, dx = \int_{0}^{1} \frac{e^{x}}{1 + a^{-x}} \, dx \] This means that both integrals can be evaluated together. ### Step 7: Final evaluation Now, we can add the two integrals: \[ \int_{0}^{1} \frac{e^{x}}{1 + a^x} \, dx + \int_{0}^{1} \frac{e^{-x}}{1 + a^{-x}} \, dx \] This results in: \[ \int_{0}^{1} \left( \frac{e^{x}}{1 + a^x} + \frac{e^{-x}}{1 + a^{-x}} \right) \, dx \] ### Conclusion The integral evaluates to a specific value depending on the function and limits. In this case, the final result is: \[ \int_{-1}^{1} \frac{e^{|x|}}{1 + a^x} \, dx = e - 1 \]

To solve the integral \( \int_{-1}^{1} \frac{e^{|x|}}{1 + a^x} \, dx \), we can utilize the properties of definite integrals and the evenness of the function involved. Here’s a step-by-step breakdown of the solution: ### Step 1: Analyze the integrand The integrand is \( \frac{e^{|x|}}{1 + a^x} \). Notice that \( |x| \) is an even function, meaning \( |x| = -x \) for \( x < 0 \) and \( |x| = x \) for \( x \geq 0 \). ### Step 2: Split the integral We can split the integral into two parts: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(2) e^(-x)dx

int_(-1)^(1)e^(2x)dx

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

Evaluate : int _(-1) ^(1) (dx)/( e^(x) + 1) dx

int_(1)^(3)e^(4x+1)dx

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The function f(x)={ 1-2x+3x^2-4x^3; x!=-1, 1; x=-1} discuss the co...

    Text Solution

    |

  2. Investigate for the maxima and minima of the function f(x)=int1^x[2(t...

    Text Solution

    |

  3. int(-1)^(1) (e^(|x|))/(1+a^(x))dx

    Text Solution

    |

  4. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  5. Value of lamda so that point (lamda,lamda^(2)) lies between the lines ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  8. The number of all subsets of a set containing 2n+1 elements which cont...

    Text Solution

    |

  9. Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^('...

    Text Solution

    |

  10. Sixteen players S(1), S(2), S(3),…,S(16) play in a tournament. Number ...

    Text Solution

    |

  11. If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1...

    Text Solution

    |

  12. Let f(x)={{:(int(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le...

    Text Solution

    |

  13. If x(1),x(2)……..x(n) be n observation and barx be their arithmetic me...

    Text Solution

    |

  14. Write the negative of the compound proposition p vv(~pvvq)

    Text Solution

    |

  15. A line L is perpendicular to the line 3x-4y-7=0 and touches the circle...

    Text Solution

    |

  16. The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))...

    Text Solution

    |

  17. If P(B)=3//4, P(AnnBnnC)=1//3 and P( A nnBnn C )=1//3, t h e nP(BnnC...

    Text Solution

    |

  18. sum(r=1)^(n) 1/(log(2^(r))4) is equal to

    Text Solution

    |

  19. In how many types ways can five different examination papers of maths...

    Text Solution

    |

  20. The area covered by the curve y=max{2-x,2,1+x} with x-axis from x=-1 t...

    Text Solution

    |