Home
Class 12
MATHS
The value of |(.^(10)C(4).^(10)C(5).^(11...

The value of `|(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))|` is equal to zero when `m` is

A

`6`

B

`4`

C

`5`

D

`7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m \) such that the determinant \[ \left| \begin{array}{ccc} ^{10}C_{4} & ^{10}C_{5} & ^{11}C_{m} \\ ^{11}C_{6} & ^{11}C_{7} & ^{12}C_{m+2} \\ ^{12}C_{8} & ^{12}C_{9} & ^{13}C_{m+4} \end{array} \right| = 0 \] ### Step 1: Understand the properties of determinants We know that if two columns of a determinant are identical, then the value of the determinant is zero. We will manipulate the columns to see if we can make two columns identical. ### Step 2: Modify the second column We will replace the second column with the sum of the first column and the second column: \[ \text{New Column 2} = \text{Column 1} + \text{Column 2} \] So, the new determinant becomes: \[ \left| \begin{array}{ccc} ^{10}C_{4} & ^{10}C_{4} + ^{10}C_{5} & ^{11}C_{m} \\ ^{11}C_{6} & ^{11}C_{6} + ^{11}C_{7} & ^{12}C_{m+2} \\ ^{12}C_{8} & ^{12}C_{8} + ^{12}C_{9} & ^{13}C_{m+4} \end{array} \right| \] ### Step 3: Apply the property of combinations Using the property \( ^nC_r + ^nC_{r+1} = ^{n+1}C_{r+1} \): - For the first row: \[ ^{10}C_{4} + ^{10}C_{5} = ^{11}C_{5} \] - For the second row: \[ ^{11}C_{6} + ^{11}C_{7} = ^{12}C_{7} \] - For the third row: \[ ^{12}C_{8} + ^{12}C_{9} = ^{13}C_{9} \] Thus, the determinant simplifies to: \[ \left| \begin{array}{ccc} ^{10}C_{4} & ^{11}C_{5} & ^{11}C_{m} \\ ^{11}C_{6} & ^{12}C_{7} & ^{12}C_{m+2} \\ ^{12}C_{8} & ^{13}C_{9} & ^{13}C_{m+4} \end{array} \right| \] ### Step 4: Set two columns equal Now we want the second and third columns to be equal to make the determinant zero: \[ ^{11}C_{5} = ^{11}C_{m} \quad \text{and} \quad ^{12}C_{7} = ^{12}C_{m+2} \] ### Step 5: Solve for \( m \) From \( ^{11}C_{5} = ^{11}C_{m} \), we have: \[ m = 5 \] From \( ^{12}C_{7} = ^{12}C_{m+2} \): \[ m + 2 = 7 \implies m = 5 \] ### Conclusion Thus, the value of \( m \) that makes the determinant equal to zero is: \[ \boxed{5} \]

To solve the problem, we need to find the value of \( m \) such that the determinant \[ \left| \begin{array}{ccc} ^{10}C_{4} & ^{10}C_{5} & ^{11}C_{m} \\ ^{11}C_{6} & ^{11}C_{7} & ^{12}C_{m+2} \\ ^{12}C_{8} & ^{12}C_{9} & ^{13}C_{m+4} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If |{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0 , then the value of r is equal to

The value of .^(13)C_(7)+.^(13)C_(8)+.^(13)C_(9)+.^(13)C_(10)+.^(13)C_(11)+.^(13)C_(12)+.^(13)C_(13) is equal to

The value of "^(12)C_(2)+^(13)C_(3)+^(14)C_(4)+...+^(999)C_(989) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Evaluate the following: (i) .^(10)C_(5) (ii) .^(12)C_(8) (iii) .^(15)C_(12) (iv) .^(n+1)C_(n) (v) .^(14)C_(9)

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

Solve the equation ""^(11)C_(1) x^(10) - ""^(11)C_(3) x^(8) + ""^(11)C_(5) x^(6) - ""^(11)C_(7) x^(4) + ""^(11)C_(9) x^(2) - ""^(11)C_(11) = 0

The value of ((C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+"......"+10(C_(10))/(C_(9))) (where C_(r) = .^(10)C_(r) ), is 11lambda , then value of lambda is

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Value of lamda so that point (lamda,lamda^(2)) lies between the lines ...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  4. The number of all subsets of a set containing 2n+1 elements which cont...

    Text Solution

    |

  5. Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^('...

    Text Solution

    |

  6. Sixteen players S(1), S(2), S(3),…,S(16) play in a tournament. Number ...

    Text Solution

    |

  7. If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1...

    Text Solution

    |

  8. Let f(x)={{:(int(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le...

    Text Solution

    |

  9. If x(1),x(2)……..x(n) be n observation and barx be their arithmetic me...

    Text Solution

    |

  10. Write the negative of the compound proposition p vv(~pvvq)

    Text Solution

    |

  11. A line L is perpendicular to the line 3x-4y-7=0 and touches the circle...

    Text Solution

    |

  12. The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))...

    Text Solution

    |

  13. If P(B)=3//4, P(AnnBnnC)=1//3 and P( A nnBnn C )=1//3, t h e nP(BnnC...

    Text Solution

    |

  14. sum(r=1)^(n) 1/(log(2^(r))4) is equal to

    Text Solution

    |

  15. In how many types ways can five different examination papers of maths...

    Text Solution

    |

  16. The area covered by the curve y=max{2-x,2,1+x} with x-axis from x=-1 t...

    Text Solution

    |

  17. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  18. Given the relation R={(1,2),(2,3) on the set A={1,2,3}, add a minimum ...

    Text Solution

    |

  19. If 2a x-2y+3z=0,x+a y+2z=0,a n d2+a z=0 have a nontrivial solution,...

    Text Solution

    |

  20. The number of value(s) of x satisfying 1-log(3)(x+1)^(2)=1/2log(sqrt(3...

    Text Solution

    |