Home
Class 12
MATHS
The value of cos^(-1)(cos(2tan^(-1)((sq...

The value of `cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))`is

A

`(pi)/6`

B

`(5pi)/6`

C

`(5pi)/12`

D

`(pi)/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^{-1}(\cos(2\tan^{-1}(\frac{\sqrt{3}+1}{\sqrt{4-2\sqrt{3}}}))) \), we can follow these steps: ### Step 1: Simplify the Denominator First, we simplify the denominator \( \sqrt{4 - 2\sqrt{3}} \). \[ 4 - 2\sqrt{3} = 1^2 + (\sqrt{3})^2 - 2 \cdot 1 \cdot \sqrt{3} = (\sqrt{3} - 1)^2 \] Thus, \[ \sqrt{4 - 2\sqrt{3}} = \sqrt{(\sqrt{3} - 1)^2} = \sqrt{3} - 1 \] ### Step 2: Substitute Back into the Expression Now, substitute this back into the expression: \[ \tan^{-1}\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) \] ### Step 3: Simplify the Fraction Next, we simplify the fraction \( \frac{\sqrt{3}+1}{\sqrt{3}-1} \) by multiplying the numerator and denominator by \( \sqrt{3}+1 \): \[ \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{(\sqrt{3}+1)^2}{3-1} = \frac{3 + 2\sqrt{3} + 1}{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] ### Step 4: Find the Angle Now we need to find the angle whose tangent is \( 2 + \sqrt{3} \). We know: \[ \tan\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \frac{\tan\frac{\pi}{4} + \tan\frac{\pi}{6}}{1 - \tan\frac{\pi}{4} \tan\frac{\pi}{6}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}} = \frac{\sqrt{3}+1}{\sqrt{3}-1} \] Thus, \[ \tan^{-1}(2+\sqrt{3}) = \frac{\pi}{4} + \frac{\pi}{6} = \frac{3\pi}{12} + \frac{2\pi}{12} = \frac{5\pi}{12} \] ### Step 5: Calculate \( 2\tan^{-1}(2+\sqrt{3}) \) Now we calculate: \[ 2\tan^{-1}(2+\sqrt{3}) = 2 \cdot \frac{5\pi}{12} = \frac{10\pi}{12} = \frac{5\pi}{6} \] ### Step 6: Find \( \cos^{-1}(\cos(\frac{5\pi}{6})) \) Finally, we find: \[ \cos^{-1}(\cos(\frac{5\pi}{6})) = \frac{5\pi}{6} \] ### Conclusion Thus, the value of \( \cos^{-1}(\cos(2\tan^{-1}(\frac{\sqrt{3}+1}{\sqrt{4-2\sqrt{3}}}))) \) is \[ \boxed{\frac{5\pi}{6}} \]

To solve the problem \( \cos^{-1}(\cos(2\tan^{-1}(\frac{\sqrt{3}+1}{\sqrt{4-2\sqrt{3}}}))) \), we can follow these steps: ### Step 1: Simplify the Denominator First, we simplify the denominator \( \sqrt{4 - 2\sqrt{3}} \). \[ 4 - 2\sqrt{3} = 1^2 + (\sqrt{3})^2 - 2 \cdot 1 \cdot \sqrt{3} = (\sqrt{3} - 1)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of tan.[cos^(-1)(1/2)+tan^(-1)(-1/(sqrt(3)))]

The value of tan(1/2 cos^(-1)(2/(sqrt(5)))) is

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Write the negative of the compound proposition p vv(~pvvq)

    Text Solution

    |

  2. A line L is perpendicular to the line 3x-4y-7=0 and touches the circle...

    Text Solution

    |

  3. The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))...

    Text Solution

    |

  4. If P(B)=3//4, P(AnnBnnC)=1//3 and P( A nnBnn C )=1//3, t h e nP(BnnC...

    Text Solution

    |

  5. sum(r=1)^(n) 1/(log(2^(r))4) is equal to

    Text Solution

    |

  6. In how many types ways can five different examination papers of maths...

    Text Solution

    |

  7. The area covered by the curve y=max{2-x,2,1+x} with x-axis from x=-1 t...

    Text Solution

    |

  8. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  9. Given the relation R={(1,2),(2,3) on the set A={1,2,3}, add a minimum ...

    Text Solution

    |

  10. If 2a x-2y+3z=0,x+a y+2z=0,a n d2+a z=0 have a nontrivial solution,...

    Text Solution

    |

  11. The number of value(s) of x satisfying 1-log(3)(x+1)^(2)=1/2log(sqrt(3...

    Text Solution

    |

  12. Total number of ordered pairs (x, y) satisfying |y| = cos x and y = si...

    Text Solution

    |

  13. If f(x+y)=2f(x) f(y) for all x,y where f'(0)=3 and f(4)=2, then f'(4) ...

    Text Solution

    |

  14. Let a be square matrix such that A("adj. A")=[(4,0,0),(0,4,0),(0,0,4)]...

    Text Solution

    |

  15. Let f(x) be a function whose domain is [-5, 7] and g(x) = |2x + 5|, th...

    Text Solution

    |

  16. Let f(x)=x^(3),x in (0,oo) and let g(x) be inverse of f(x), then g'(x)...

    Text Solution

    |

  17. Suppose that f is an even, periodic function with period 2, and f(x)=x...

    Text Solution

    |

  18. The value of sin^(-1) (cot(sin^(-1) sqrt((2 -sqrt3)/(4)) + cos^(-1)....

    Text Solution

    |

  19. The number of real solutions of cos^-1 x + cos^-1 2 x = -pi is

    Text Solution

    |

  20. If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x...

    Text Solution

    |