Home
Class 12
MATHS
sum(r=1)^(n) 1/(log(2^(r))4) is equal to...

`sum_(r=1)^(n) 1/(log_(2^(r))4)` is equal to

A

`(n(n+1))/2`

B

`(n(n+1)(2n+1))/12`

C

`1/(n(n+1))`

D

`(n(n+1))/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{r=1}^{n} \frac{1}{\log_{2^r} 4} \] ### Step 1: Rewrite the logarithm Using the change of base formula for logarithms, we can rewrite \(\log_{2^r} 4\) as follows: \[ \log_{2^r} 4 = \frac{\log_2 4}{\log_2 (2^r)} = \frac{\log_2 4}{r} \] Since \(\log_2 4 = 2\) (because \(2^2 = 4\)), we have: \[ \log_{2^r} 4 = \frac{2}{r} \] ### Step 2: Substitute back into the summation Now we can substitute this back into our summation: \[ \sum_{r=1}^{n} \frac{1}{\log_{2^r} 4} = \sum_{r=1}^{n} \frac{1}{\frac{2}{r}} = \sum_{r=1}^{n} \frac{r}{2} \] ### Step 3: Factor out the constant We can factor out the constant \(\frac{1}{2}\) from the summation: \[ \sum_{r=1}^{n} \frac{r}{2} = \frac{1}{2} \sum_{r=1}^{n} r \] ### Step 4: Use the formula for the sum of the first \(n\) natural numbers The sum of the first \(n\) natural numbers is given by the formula: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] ### Step 5: Substitute this result back Substituting this result back into our expression, we get: \[ \frac{1}{2} \cdot \frac{n(n+1)}{2} = \frac{n(n+1)}{4} \] ### Final Result Thus, the value of the summation is: \[ \sum_{r=1}^{n} \frac{1}{\log_{2^r} 4} = \frac{n(n+1)}{4} \] This matches with option D.

To solve the problem, we need to evaluate the summation: \[ \sum_{r=1}^{n} \frac{1}{\log_{2^r} 4} \] ### Step 1: Rewrite the logarithm Using the change of base formula for logarithms, we can rewrite \(\log_{2^r} 4\) as follows: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If sum of x terms of a series is S_(x)=(1)/((2x+3)(2x+1)) whose r^(th) term is T_(r) . Then, sum_(r=1)^(n) (1)/(T_(r)) is equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

sum_(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

If Delta_(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,(n +1)! -1,n(n +1))| , then sum_(r =1)^(n) Delta_(r) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))...

    Text Solution

    |

  2. If P(B)=3//4, P(AnnBnnC)=1//3 and P( A nnBnn C )=1//3, t h e nP(BnnC...

    Text Solution

    |

  3. sum(r=1)^(n) 1/(log(2^(r))4) is equal to

    Text Solution

    |

  4. In how many types ways can five different examination papers of maths...

    Text Solution

    |

  5. The area covered by the curve y=max{2-x,2,1+x} with x-axis from x=-1 t...

    Text Solution

    |

  6. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  7. Given the relation R={(1,2),(2,3) on the set A={1,2,3}, add a minimum ...

    Text Solution

    |

  8. If 2a x-2y+3z=0,x+a y+2z=0,a n d2+a z=0 have a nontrivial solution,...

    Text Solution

    |

  9. The number of value(s) of x satisfying 1-log(3)(x+1)^(2)=1/2log(sqrt(3...

    Text Solution

    |

  10. Total number of ordered pairs (x, y) satisfying |y| = cos x and y = si...

    Text Solution

    |

  11. If f(x+y)=2f(x) f(y) for all x,y where f'(0)=3 and f(4)=2, then f'(4) ...

    Text Solution

    |

  12. Let a be square matrix such that A("adj. A")=[(4,0,0),(0,4,0),(0,0,4)]...

    Text Solution

    |

  13. Let f(x) be a function whose domain is [-5, 7] and g(x) = |2x + 5|, th...

    Text Solution

    |

  14. Let f(x)=x^(3),x in (0,oo) and let g(x) be inverse of f(x), then g'(x)...

    Text Solution

    |

  15. Suppose that f is an even, periodic function with period 2, and f(x)=x...

    Text Solution

    |

  16. The value of sin^(-1) (cot(sin^(-1) sqrt((2 -sqrt3)/(4)) + cos^(-1)....

    Text Solution

    |

  17. The number of real solutions of cos^-1 x + cos^-1 2 x = -pi is

    Text Solution

    |

  18. If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x...

    Text Solution

    |

  19. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  20. The number of ordered triples (x,y,z) that satisfy the equation (sin^(...

    Text Solution

    |