Home
Class 12
MATHS
If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y...

If `sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0` and `x^(2)=y` then `x` is equal to

A

`2`

B

`4`

C

`sqrt(2)`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(\tan(\frac{\pi}{4})) - \sin^{-1}(\sqrt{\frac{3}{y}}) - \frac{\pi}{6} = 0 \) and find the value of \( x \) given that \( x^2 = y \), we can follow these steps: ### Step 1: Simplify \( \tan(\frac{\pi}{4}) \) We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, we can rewrite the equation as: \[ \sin^{-1}(1) - \sin^{-1}\left(\sqrt{\frac{3}{y}}\right) - \frac{\pi}{6} = 0 \] ### Step 2: Evaluate \( \sin^{-1}(1) \) The value of \( \sin^{-1}(1) \) is: \[ \sin^{-1}(1) = \frac{\pi}{2} \] Now, substituting this back into the equation gives: \[ \frac{\pi}{2} - \sin^{-1}\left(\sqrt{\frac{3}{y}}\right) - \frac{\pi}{6} = 0 \] ### Step 3: Rearranging the equation Rearranging the equation, we have: \[ \frac{\pi}{2} - \frac{\pi}{6} = \sin^{-1}\left(\sqrt{\frac{3}{y}}\right) \] ### Step 4: Simplifying the left side To simplify \( \frac{\pi}{2} - \frac{\pi}{6} \), we find a common denominator: \[ \frac{\pi}{2} = \frac{3\pi}{6} \] Thus: \[ \frac{3\pi}{6} - \frac{\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3} \] So, we have: \[ \sin^{-1}\left(\sqrt{\frac{3}{y}}\right) = \frac{\pi}{3} \] ### Step 5: Taking the sine of both sides Taking the sine of both sides gives: \[ \sqrt{\frac{3}{y}} = \sin\left(\frac{\pi}{3}\right) \] We know that: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, we have: \[ \sqrt{\frac{3}{y}} = \frac{\sqrt{3}}{2} \] ### Step 6: Squaring both sides Squaring both sides results in: \[ \frac{3}{y} = \frac{3}{4} \] ### Step 7: Solving for \( y \) Cross-multiplying gives: \[ 3 \cdot 4 = 3y \implies 12 = 3y \implies y = 4 \] ### Step 8: Finding \( x \) Since we are given that \( x^2 = y \): \[ x^2 = 4 \] Taking the square root gives: \[ x = \pm 2 \] ### Final Answer Thus, the value of \( x \) is: \[ x = 2 \quad \text{(considering only the positive root as a standard convention)} \]

To solve the equation \( \sin^{-1}(\tan(\frac{\pi}{4})) - \sin^{-1}(\sqrt{\frac{3}{y}}) - \frac{\pi}{6} = 0 \) and find the value of \( x \) given that \( x^2 = y \), we can follow these steps: ### Step 1: Simplify \( \tan(\frac{\pi}{4}) \) We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}] then A-B is equal to

The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=0 is

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

Solve the equation sin^(-1)x+sin^(-1)6sqrt(3)x=(-pi)/2dot

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The value of sin^(-1) (cot(sin^(-1) sqrt((2 -sqrt3)/(4)) + cos^(-1)....

    Text Solution

    |

  2. The number of real solutions of cos^-1 x + cos^-1 2 x = -pi is

    Text Solution

    |

  3. If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x...

    Text Solution

    |

  4. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  5. The number of ordered triples (x,y,z) that satisfy the equation (sin^(...

    Text Solution

    |

  6. If y=tan^(-1)x+tan^(-1)(1/x)+cosec^(-1)x,xepsilon(-oo,-1)uu[1,oo), the...

    Text Solution

    |

  7. Find lim(xrarr(2n+1)pi^(+)) sin([sinx](pi)/6), where [.] is a greatest...

    Text Solution

    |

  8. Prove that lim(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x) (without using...

    Text Solution

    |

  9. lim(xrarr1)(1-x)tan((pix)/2) is equal to

    Text Solution

    |

  10. If f(x)=sqrt(1-e^(-x^2)), then at x=0f(x) is

    Text Solution

    |

  11. If [.] and {.} denote greatest and fractional part functions respectiv...

    Text Solution

    |

  12. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  13. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  14. Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^(1/n) =a/b where a and b are r...

    Text Solution

    |

  15. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  16. For positive integers K=1,2,3,……….n Let S(k) denotes the area of Delta...

    Text Solution

    |

  17. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  18. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  19. The derivative of y = (1-x) (2-x)…(n-x) at x= 1 is

    Text Solution

    |

  20. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |