Home
Class 12
MATHS
If y=tan^(-1)x+tan^(-1)(1/x)+cosec^(-1)x...

If `y=tan^(-1)x+tan^(-1)(1/x)+cosec^(-1)x,xepsilon(-oo,-1)uu[1,oo)`, then `yepsilon`

A

`[-pi,-(pi)/2)uu((pi)/2,pi]`

B

`(-(pi)/2,(pi)/2)`

C

`(0,pi)`

D

`[0,(pi)/2)uu[(pi)/2,pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression for \( y \): \[ y = \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) + \csc^{-1}(x) \] where \( x \in (-\infty, -1) \cup [1, \infty) \). ### Step 1: Simplifying \( \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) \) Using the identity for the sum of arctangents, we have: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \quad \text{for } x > 0 \] \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = -\frac{\pi}{2} \quad \text{for } x < 0 \] Since \( x \) can be either negative or positive, we will consider both cases. ### Step 2: Case 1: \( x \in [1, \infty) \) For \( x \geq 1 \): \[ y = \frac{\pi}{2} + \csc^{-1}(x) \] The range of \( \csc^{-1}(x) \) for \( x \geq 1 \) is \( [0, \frac{\pi}{2}] \). Therefore, we can find the range of \( y \): \[ y \in \left[\frac{\pi}{2}, \frac{\pi}{2} + \frac{\pi}{2}\right] = \left[\frac{\pi}{2}, \pi\right] \] ### Step 3: Case 2: \( x \in (-\infty, -1) \) For \( x < -1 \): \[ y = -\frac{\pi}{2} + \csc^{-1}(x) \] The range of \( \csc^{-1}(x) \) for \( x < -1 \) is \( (-\pi, -\frac{\pi}{2}] \). Therefore, we can find the range of \( y \): \[ y \in \left[-\frac{\pi}{2} - \pi, -\frac{\pi}{2}\right] = \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right] \] ### Step 4: Combining the Ranges Now we combine the ranges from both cases: 1. For \( x \in [1, \infty) \), \( y \in \left[\frac{\pi}{2}, \pi\right] \) 2. For \( x \in (-\infty, -1) \), \( y \in \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right] \) Thus, the overall range of \( y \) is: \[ y \in \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right] \] ### Final Answer The final answer is: \[ y \in \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right] \]

To solve the problem, we need to analyze the given expression for \( y \): \[ y = \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) + \csc^{-1}(x) \] where \( x \in (-\infty, -1) \cup [1, \infty) \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

If I_(1)=lim_(xto oo)(tan^(-1)pi x- tan^(-1)x)cosx and I_(2)=lim_(xto0)(tan^(-1)pi x-tan^(-1)x)cosx then (I_(1),I_(2)) is

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y . Then which of the following may be true (a) (x+y)/(tan1)=-2 (b) (tan^(-1)x)/(1-tan^(-1)y)=2 (c) (tan^(-1)x)/(1-tan^(-1)y)=2 (d) (x+y)/(cot1)=1

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  2. The number of ordered triples (x,y,z) that satisfy the equation (sin^(...

    Text Solution

    |

  3. If y=tan^(-1)x+tan^(-1)(1/x)+cosec^(-1)x,xepsilon(-oo,-1)uu[1,oo), the...

    Text Solution

    |

  4. Find lim(xrarr(2n+1)pi^(+)) sin([sinx](pi)/6), where [.] is a greatest...

    Text Solution

    |

  5. Prove that lim(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x) (without using...

    Text Solution

    |

  6. lim(xrarr1)(1-x)tan((pix)/2) is equal to

    Text Solution

    |

  7. If f(x)=sqrt(1-e^(-x^2)), then at x=0f(x) is

    Text Solution

    |

  8. If [.] and {.} denote greatest and fractional part functions respectiv...

    Text Solution

    |

  9. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  10. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  11. Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^(1/n) =a/b where a and b are r...

    Text Solution

    |

  12. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  13. For positive integers K=1,2,3,……….n Let S(k) denotes the area of Delta...

    Text Solution

    |

  14. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  15. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  16. The derivative of y = (1-x) (2-x)…(n-x) at x= 1 is

    Text Solution

    |

  17. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  18. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  19. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  20. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |