Home
Class 12
MATHS
lim(xrarr1)(1-x)tan((pix)/2) is equal to...

`lim_(xrarr1)(1-x)tan((pix)/2)` is equal to

A

`(pi)/2`

B

`2/(pi)`

C

`-(pi)/2`

D

`-2/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \), we can follow these steps: ### Step 1: Substitute \( t = 1 - x \) Let \( t = 1 - x \). As \( x \to 1 \), \( t \to 0 \). Therefore, we can rewrite the limit in terms of \( t \): \[ x = 1 - t \implies \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = \lim_{t \to 0} t \tan\left(\frac{\pi (1 - t)}{2}\right) \] ### Step 2: Simplify the argument of the tangent function Now, simplify the argument of the tangent: \[ \frac{\pi (1 - t)}{2} = \frac{\pi}{2} - \frac{\pi t}{2} \] Thus, we can rewrite the limit as: \[ \lim_{t \to 0} t \tan\left(\frac{\pi}{2} - \frac{\pi t}{2}\right) \] ### Step 3: Use the identity for tangent Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot(x) \), we can rewrite the limit: \[ \lim_{t \to 0} t \cot\left(\frac{\pi t}{2}\right) \] ### Step 4: Rewrite cotangent in terms of sine and cosine Recall that \( \cot(x) = \frac{\cos(x)}{\sin(x)} \). Therefore, we have: \[ \lim_{t \to 0} t \cdot \frac{\cos\left(\frac{\pi t}{2}\right)}{\sin\left(\frac{\pi t}{2}\right)} \] ### Step 5: Analyze the limit As \( t \to 0 \), \( \cos\left(\frac{\pi t}{2}\right) \to 1 \) and \( \sin\left(\frac{\pi t}{2}\right) \) can be approximated by its Taylor series expansion: \[ \sin\left(\frac{\pi t}{2}\right) \approx \frac{\pi t}{2} \] Thus, the limit becomes: \[ \lim_{t \to 0} t \cdot \frac{1}{\frac{\pi t}{2}} = \lim_{t \to 0} \frac{2t}{\pi t} = \lim_{t \to 0} \frac{2}{\pi} = \frac{2}{\pi} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = \frac{2}{\pi} \]

To solve the limit \( \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \), we can follow these steps: ### Step 1: Substitute \( t = 1 - x \) Let \( t = 1 - x \). As \( x \to 1 \), \( t \to 0 \). Therefore, we can rewrite the limit in terms of \( t \): \[ x = 1 - t \implies \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = \lim_{t \to 0} t \tan\left(\frac{\pi (1 - t)}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(xrarr0) (1+x+x^2-e^x)/(x^2) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(xrarr0)(tan2x-x)/(3x-sinx) is equal to

lim_(xrarr0) (x)/(tan^-1x) is equal to

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr1) (1+cos pix)cot^2pi x is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Find lim(xrarr(2n+1)pi^(+)) sin([sinx](pi)/6), where [.] is a greatest...

    Text Solution

    |

  2. Prove that lim(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x) (without using...

    Text Solution

    |

  3. lim(xrarr1)(1-x)tan((pix)/2) is equal to

    Text Solution

    |

  4. If f(x)=sqrt(1-e^(-x^2)), then at x=0f(x) is

    Text Solution

    |

  5. If [.] and {.} denote greatest and fractional part functions respectiv...

    Text Solution

    |

  6. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  7. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  8. Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^(1/n) =a/b where a and b are r...

    Text Solution

    |

  9. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  10. For positive integers K=1,2,3,……….n Let S(k) denotes the area of Delta...

    Text Solution

    |

  11. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  12. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  13. The derivative of y = (1-x) (2-x)…(n-x) at x= 1 is

    Text Solution

    |

  14. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  15. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  16. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  17. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |

  18. "If "y=x^((x^(x)))," then "(dy)/(dx) is

    Text Solution

    |

  19. If f (x)=(4+x )^(n), n in N and f'(0) represents then r^(th) derivativ...

    Text Solution

    |

  20. Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greates...

    Text Solution

    |