Home
Class 12
MATHS
If f(x)={((1-sin((3x)/2))/(pi-3x) , x ...

If `f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2))` be continuous at `x=pi/3` , then value of `lamda` is (A) `-1` (B) `1` (C) `0` (D) `2`

A

`2`

B

`1/2`

C

`1/4`

D

`-1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the function \[ f(x) = \begin{cases} \frac{1 - \sin\left(\frac{3x}{2}\right)}{\pi - 3x} & \text{if } x \neq \frac{\pi}{2} \\ \lambda & \text{if } x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{3} \), we need to ensure that the left-hand limit (LHL) and right-hand limit (RHL) at \( x = \frac{\pi}{3} \) are equal to the function value at that point. ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \to \frac{\pi}{3} \) We start by calculating the limit: \[ \lim_{x \to \frac{\pi}{3}^-} f(x) = \lim_{x \to \frac{\pi}{3}^-} \frac{1 - \sin\left(\frac{3x}{2}\right)}{\pi - 3x} \] Substituting \( x = \frac{\pi}{3} \): \[ = \frac{1 - \sin\left(\frac{3 \cdot \frac{\pi}{3}}{2}\right)}{\pi - 3 \cdot \frac{\pi}{3}} = \frac{1 - \sin\left(\frac{\pi}{2}\right)}{\pi - \pi} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( 1 - \sin\left(\frac{3x}{2}\right) \) is \( -\frac{3}{2} \cos\left(\frac{3x}{2}\right) \). - The derivative of the denominator \( \pi - 3x \) is \( -3 \). Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{3}^-} \frac{-\frac{3}{2} \cos\left(\frac{3x}{2}\right)}{-3} = \lim_{x \to \frac{\pi}{3}^-} \frac{\frac{3}{2} \cos\left(\frac{3x}{2}\right)}{3} = \frac{1}{2} \cos\left(\frac{3 \cdot \frac{\pi}{3}}{2}\right) = \frac{1}{2} \cos\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot 0 = 0 \] ### Step 3: Calculate the Right-Hand Limit (RHL) as \( x \to \frac{\pi}{3} \) Since the function is defined the same way for both sides around \( x = \frac{\pi}{3} \), we have: \[ \lim_{x \to \frac{\pi}{3}^+} f(x) = \lim_{x \to \frac{\pi}{3}^-} f(x) = 0 \] ### Step 4: Set the Function Value Equal to the Limits For the function to be continuous at \( x = \frac{\pi}{3} \): \[ f\left(\frac{\pi}{3}\right) = \lambda \] Since both limits equal \( 0 \): \[ \lambda = 0 \] ### Conclusion Thus, the value of \( \lambda \) that makes the function continuous at \( x = \frac{\pi}{3} \) is: \[ \boxed{0} \]

To find the value of \( \lambda \) such that the function \[ f(x) = \begin{cases} \frac{1 - \sin\left(\frac{3x}{2}\right)}{\pi - 3x} & \text{if } x \neq \frac{\pi}{2} \\ \lambda & \text{if } x = \frac{\pi}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

If f(x)=(1-sinx)/((pi-2x)^2) ,when x!=pi/2 and f(pi/2)=lambda, the f(x) will be continuous function at x=pi/2 ,where lambda=? (a) 1/8 (b) 1/4 (c) 1/2 (d) none of these

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Examination the function f(x) given by f(x)={((cosx)/(pi/2-x) ,, x != pi/2),(1 ,, x = pi/2):} ; for continuity at x=pi/2

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \ \ ,\ \ \ x!=pi/2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ ,\x=pi/2 is continuous at x=pi/2 , then k is equal to (a) 0 (b) 1/2 (c) 1 (d) -1

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f(x)=sqrt(1-e^(-x^2)), then at x=0f(x) is

    Text Solution

    |

  2. If [.] and {.} denote greatest and fractional part functions respectiv...

    Text Solution

    |

  3. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  4. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  5. Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^(1/n) =a/b where a and b are r...

    Text Solution

    |

  6. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  7. For positive integers K=1,2,3,……….n Let S(k) denotes the area of Delta...

    Text Solution

    |

  8. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  9. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  10. The derivative of y = (1-x) (2-x)…(n-x) at x= 1 is

    Text Solution

    |

  11. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  12. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  13. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  14. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |

  15. "If "y=x^((x^(x)))," then "(dy)/(dx) is

    Text Solution

    |

  16. If f (x)=(4+x )^(n), n in N and f'(0) represents then r^(th) derivativ...

    Text Solution

    |

  17. Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greates...

    Text Solution

    |

  18. If the derivative of an odd cubic polynomial vanishes at two different...

    Text Solution

    |

  19. f (x)= {{:(3+|x-k|"," , x le k),(a ^(2) -2 + ( sin (x -k))/((x-k))"," ...

    Text Solution

    |

  20. Find the critical (stationary ) points of the function f(X)=(x^(5))/(2...

    Text Solution

    |