Home
Class 12
MATHS
If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2...

If `f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1)))` then `lim_(x->0) f(x)/x` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit given in the question step by step. ### Step 1: Define the function We start with the function defined as: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{\tan\left(\frac{x}{2^{r+1}}\right) + \tan^3\left(\frac{x}{2^{r+1}}\right)}{1 - \tan^2\left(\frac{x}{2^{r+1}}\right)} \] ### Step 2: Simplify the expression Using the identity for tangent, we can rewrite the expression inside the limit. We know that: \[ \frac{\tan A + \tan^3 A}{1 - \tan^2 A} = \tan A \cdot \frac{1 + \tan^2 A}{1 - \tan^2 A} \] Thus, we can express \(f(x)\) as: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \tan\left(\frac{x}{2^{r+1}}\right) \cdot \frac{1 + \tan^2\left(\frac{x}{2^{r+1}}\right)}{1 - \tan^2\left(\frac{x}{2^{r+1}}\right)} \] ### Step 3: Change of variable Let \( \alpha_r = \frac{x}{2^{r+1}} \). As \( r \) increases, \( \alpha_r \) approaches 0. Thus, we can rewrite the limit: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \tan(\alpha_r) \cdot \frac{1 + \tan^2(\alpha_r)}{1 - \tan^2(\alpha_r)} \] ### Step 4: Use Taylor series expansion For small values of \( \alpha_r \), we can use the Taylor series expansion of \(\tan\): \[ \tan(\alpha_r) \approx \alpha_r + \frac{\alpha_r^3}{3} + O(\alpha_r^5) \] ### Step 5: Evaluate the limit Substituting \(\alpha_r\) back into the function, we have: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{x}{2^{r+1}} + \frac{1}{3}\left(\frac{x}{2^{r+1}}\right)^3 \right) \] This sum can be evaluated using the formula for the sum of a geometric series. The first term converges to: \[ \sum_{r=0}^{n} \frac{x}{2^{r+1}} = x \sum_{r=0}^{n} \frac{1}{2^{r+1}} = x \left(1 - \frac{1}{2^{n+1}}\right) \frac{1}{1 - \frac{1}{2}} = x \left(1 - \frac{1}{2^{n+1}}\right) \cdot 2 \] As \( n \to \infty \), this approaches \( x \cdot 2 \). ### Step 6: Final limit evaluation Thus, we find that: \[ f(x) \approx 2x \] Now we need to evaluate: \[ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{2x}{x} = 2 \] ### Conclusion The final result is: \[ \lim_{x \to 0} \frac{f(x)}{x} = 2 \]

To solve the problem, we need to evaluate the limit given in the question step by step. ### Step 1: Define the function We start with the function defined as: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{\tan\left(\frac{x}{2^{r+1}}\right) + \tan^3\left(\frac{x}{2^{r+1}}\right)}{1 - \tan^2\left(\frac{x}{2^{r+1}}\right)} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))) , then sum_(r = 0)^(9) f(r ) is

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If [.] and {.} denote greatest and fractional part functions respectiv...

    Text Solution

    |

  2. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  3. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  4. Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^(1/n) =a/b where a and b are r...

    Text Solution

    |

  5. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  6. For positive integers K=1,2,3,……….n Let S(k) denotes the area of Delta...

    Text Solution

    |

  7. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  8. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  9. The derivative of y = (1-x) (2-x)…(n-x) at x= 1 is

    Text Solution

    |

  10. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  11. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  12. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  13. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |

  14. "If "y=x^((x^(x)))," then "(dy)/(dx) is

    Text Solution

    |

  15. If f (x)=(4+x )^(n), n in N and f'(0) represents then r^(th) derivativ...

    Text Solution

    |

  16. Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greates...

    Text Solution

    |

  17. If the derivative of an odd cubic polynomial vanishes at two different...

    Text Solution

    |

  18. f (x)= {{:(3+|x-k|"," , x le k),(a ^(2) -2 + ( sin (x -k))/((x-k))"," ...

    Text Solution

    |

  19. Find the critical (stationary ) points of the function f(X)=(x^(5))/(2...

    Text Solution

    |

  20. If curve y=1-ax^(2) and y=x^(2) intersect orthogonally then a is

    Text Solution

    |