Home
Class 12
MATHS
Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^...

Given `lim_(n->oo)((.^(3n)C_n)/(.^(2n)C_n))^(1/n) =a/b` where a and b are relatively prime, find the value of `(a + b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \left( \frac{C(3n, n)}{C(2n, n)} \right)^{\frac{1}{n}} \] where \( C(n, r) \) is the binomial coefficient defined as: \[ C(n, r) = \frac{n!}{r!(n-r)!} \] ### Step 1: Write the limit in terms of factorials Using the definition of binomial coefficients, we can express the limit as: \[ C(3n, n) = \frac{(3n)!}{n!(3n-n)!} = \frac{(3n)!}{n!(2n)!} \] \[ C(2n, n) = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!} \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \left( \frac{(3n)!}{n!(2n)!} \cdot \frac{n!n!}{(2n)!} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \frac{(3n)!}{(2n)! \cdot n!} \right)^{\frac{1}{n}} \] ### Step 2: Simplify the expression This simplifies to: \[ \lim_{n \to \infty} \left( \frac{(3n)!}{(2n)! \cdot n!} \right)^{\frac{1}{n}} \] ### Step 3: Apply Stirling's approximation Using Stirling's approximation, \( n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \), we can approximate the factorials: \[ (3n)! \sim \sqrt{6 \pi n} \left( \frac{3n}{e} \right)^{3n} \] \[ (2n)! \sim \sqrt{4 \pi n} \left( \frac{2n}{e} \right)^{2n} \] \[ n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] ### Step 4: Substitute the approximations Substituting these approximations into our limit gives: \[ \lim_{n \to \infty} \left( \frac{\sqrt{6 \pi n} \left( \frac{3n}{e} \right)^{3n}}{\sqrt{4 \pi n} \left( \frac{2n}{e} \right)^{2n} \cdot \sqrt{2 \pi n} \left( \frac{n}{e} \right)^{n}} \right)^{\frac{1}{n}} \] ### Step 5: Simplify the limit This simplifies to: \[ \lim_{n \to \infty} \left( \frac{\sqrt{6}}{\sqrt{8 \pi n}} \cdot \frac{(3n)^{3n}}{(2n)^{2n} \cdot n^n} \cdot e^{n}} \right)^{\frac{1}{n}} \] The dominant term in the limit is: \[ \frac{(3n)^{3n}}{(2n)^{2n} \cdot n^n} = \frac{3^{3n} n^{3n}}{2^{2n} n^{2n} n^n} = \frac{3^{3n}}{2^{2n}} = \left( \frac{27}{4} \right)^{n} \] ### Step 6: Evaluate the limit Thus, we have: \[ \lim_{n \to \infty} \left( \frac{27}{4} \right) = \frac{27}{4} \] ### Step 7: Identify \( a \) and \( b \) Here, \( a = 27 \) and \( b = 4 \). Since 27 and 4 are relatively prime, we find: \[ a + b = 27 + 4 = 31 \] ### Final Answer Thus, the final answer is: \[ \boxed{31} \]

To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \left( \frac{C(3n, n)}{C(2n, n)} \right)^{\frac{1}{n}} \] where \( C(n, r) \) is the binomial coefficient defined as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

The value of lim_(n->oo) n^(1/n)

Let lim _( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3)....n ^(n ))^((1)/(n ^(2)))=e^((-p)/(q)) where p and q are relative prime positive integers. Find the value of |p+q|.

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

Evaluate: ("lim")_(n->oo)(4^n+5^n)^(1/n)

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt is

lim_(n to oo)(n!)/((n+1)!-n!)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  2. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  3. Given lim(n->oo)((.^(3n)Cn)/(.^(2n)Cn))^(1/n) =a/b where a and b are r...

    Text Solution

    |

  4. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  5. For positive integers K=1,2,3,……….n Let S(k) denotes the area of Delta...

    Text Solution

    |

  6. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  7. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  8. The derivative of y = (1-x) (2-x)…(n-x) at x= 1 is

    Text Solution

    |

  9. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  10. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  11. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  12. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |

  13. "If "y=x^((x^(x)))," then "(dy)/(dx) is

    Text Solution

    |

  14. If f (x)=(4+x )^(n), n in N and f'(0) represents then r^(th) derivativ...

    Text Solution

    |

  15. Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greates...

    Text Solution

    |

  16. If the derivative of an odd cubic polynomial vanishes at two different...

    Text Solution

    |

  17. f (x)= {{:(3+|x-k|"," , x le k),(a ^(2) -2 + ( sin (x -k))/((x-k))"," ...

    Text Solution

    |

  18. Find the critical (stationary ) points of the function f(X)=(x^(5))/(2...

    Text Solution

    |

  19. If curve y=1-ax^(2) and y=x^(2) intersect orthogonally then a is

    Text Solution

    |

  20. If the relation between subnormal SN and subtangent ST on the curve, b...

    Text Solution

    |