Home
Class 12
MATHS
If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx...

If `3f(cosx)+2f(sinx)=5x`, then `f^(')(cosx)` is equal to (where `f^(')` denotes derivative with respect to`x`) (A) `−1/(cosx)` (B) `1/(cosx)` (C) `-1/(sinx)` (D) `1/(sinx)`

A

`-5/(cosx)`

B

`5/(cosx)`

C

`-5/(sinx)`

D

`5/(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given Equation**: \[ 3f(\cos x) + 2f(\sin x) = 5x \tag{1} \] 2. **Substituting \( x \) with \( \frac{\pi}{2} - x \)**: We replace \( x \) in equation (1) with \( \frac{\pi}{2} - x \): \[ 3f\left(\cos\left(\frac{\pi}{2} - x\right)\right) + 2f\left(\sin\left(\frac{\pi}{2} - x\right)\right) = 5\left(\frac{\pi}{2} - x\right) \] Using the trigonometric identities \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \) and \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \), we rewrite the equation: \[ 3f(\sin x) + 2f(\cos x) = 5\left(\frac{\pi}{2} - x\right) \tag{2} \] 3. **Multiply Equation (1) by 3 and Equation (2) by 2**: - From (1): \[ 9f(\cos x) + 6f(\sin x) = 15x \] - From (2): \[ 6f(\sin x) + 4f(\cos x) = 5\pi - 10x \] 4. **Subtract the modified equations**: Now, we subtract the second modified equation from the first: \[ (9f(\cos x) + 6f(\sin x)) - (6f(\sin x) + 4f(\cos x)) = 15x - (5\pi - 10x) \] This simplifies to: \[ 5f(\cos x) = 15x - 5\pi + 10x \] \[ 5f(\cos x) = 25x - 5\pi \] Dividing through by 5: \[ f(\cos x) = 5x - \pi \tag{3} \] 5. **Express \( f(t) \)**: Let \( t = \cos x \). Then, from equation (3): \[ f(t) = 5\cos^{-1}(t) - \pi \] 6. **Differentiate \( f(t) \)**: Now we differentiate \( f(t) \) with respect to \( t \): \[ f'(t) = \frac{d}{dt}(5\cos^{-1}(t) - \pi) \] The derivative of \( \cos^{-1}(t) \) is \( -\frac{1}{\sqrt{1 - t^2}} \): \[ f'(t) = 5 \cdot \left(-\frac{1}{\sqrt{1 - t^2}}\right) = -\frac{5}{\sqrt{1 - t^2}} \] 7. **Substituting back \( t = \cos x \)**: Now we substitute back \( t = \cos x \): \[ f'(\cos x) = -\frac{5}{\sqrt{1 - \cos^2 x}} = -\frac{5}{\sin x} \] 8. **Final Result**: Therefore, we have: \[ f'(\cos x) = -\frac{5}{\sin x} \] Since the question asks for \( f'(\cos x) \) and we have derived that it equals \( -\frac{5}{\sin x} \), we can conclude that the correct answer is: **Answer**: (C) \(-\frac{1}{\sin x}\)

To solve the problem, we start with the given equation: 1. **Given Equation**: \[ 3f(\cos x) + 2f(\sin x) = 5x \tag{1} \] 2. **Substituting \( x \) with \( \frac{\pi}{2} - x \)**: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise Math|105 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

int(x+sinx)/(1+cosx) dx is equal to

If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

Find the derivative if f(x)=sinx+cosx

Find the derivative of f(x)=sinx-cosx

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

Solve (sinx)/(1+cosx)+(1+cosx)/(sinx)

Differentiate (cosx)^(sinx) with respect to (sinx)^(cosx) .

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  2. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  3. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |

  4. "If "y=x^((x^(x)))," then "(dy)/(dx) is

    Text Solution

    |

  5. If f (x)=(4+x )^(n), n in N and f'(0) represents then r^(th) derivativ...

    Text Solution

    |

  6. Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greates...

    Text Solution

    |

  7. If the derivative of an odd cubic polynomial vanishes at two different...

    Text Solution

    |

  8. f (x)= {{:(3+|x-k|"," , x le k),(a ^(2) -2 + ( sin (x -k))/((x-k))"," ...

    Text Solution

    |

  9. Find the critical (stationary ) points of the function f(X)=(x^(5))/(2...

    Text Solution

    |

  10. If curve y=1-ax^(2) and y=x^(2) intersect orthogonally then a is

    Text Solution

    |

  11. If the relation between subnormal SN and subtangent ST on the curve, b...

    Text Solution

    |

  12. Find the point on the curve y=x^3-11 x+5 at which the tangent is y"...

    Text Solution

    |

  13. Find the equation of tangent to the hyperbola 16x^(2)-25y^(2)=400 perp...

    Text Solution

    |

  14. Find the rate of change of volume of a sphere with respect to its s...

    Text Solution

    |

  15. ((2x+3y)/5)+(2f(x)+3f(y))/5 and f^(')(0)=p and f(0)=q. Then f^(")(0) i...

    Text Solution

    |

  16. If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)...

    Text Solution

    |

  17. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  18. The curve y=2e^(2x) intersect the y-axis at an angle cot^(-1)|(8n-4)/3...

    Text Solution

    |

  19. If a , b are two real numbers with a<b then a real number c can be fo...

    Text Solution

    |

  20. If the slope of the line through the origin which is tangent to the cu...

    Text Solution

    |