Home
Class 12
CHEMISTRY
If DeltaH(f(C(2)H(6)))^(0)(g) = -85 KJH ...

If `DeltaH_(f(C_(2)H_(6)))^(0)(g) = -85 KJH mol^(-1) , DeltaH_(f(C_(3)H_(8)))^(0) (g) = -104 KJ mol^(-1), DeltaH^(0)` for `C (s) rarr C(g)` is `718 KJ mol^(-1)` and heat of formation of H-atom is `218 KJmol^(-1)` then :

A

`DeltaH_(C-C) = 345` KJ

B

`DeltaH_(C-H) = 414` KJ

C

`DeltaH_(H-H)=436 KJ`

D

`DeltaH_(H-H) = 456` KJ

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the bond enthalpies of C-H and C-C bonds using the given data. Here’s a step-by-step breakdown of the solution: ### Step 1: Understand the Formation Reactions The formation of ethane (C₂H₆) can be represented as: \[ 2C(s) + 3H_2(g) \rightarrow C_2H_6(g) \] The formation of propane (C₃H₈) can be represented as: \[ 3C(s) + 4H_2(g) \rightarrow C_3H_8(g) \] ### Step 2: Write the Enthalpy Change for C₂H₆ The enthalpy change for the formation of C₂H₆ can be expressed as: \[ \Delta H_f^{\circ}(C_2H_6) = \Delta H_{sublimation} + \Delta H_{formation \, of \, H_2} - \text{(bond energies)} \] Where: - \(\Delta H_{sublimation} = 2 \times 718 \, \text{kJ/mol}\) (for converting 2C(s) to 2C(g)) - \(\Delta H_{formation \, of \, H_2} = 3 \times 218 \, \text{kJ/mol}\) (for forming 3H₂ from H atoms) - Bond energies: \(6A\) (for 6 C-H bonds) and \(B\) (for 1 C-C bond) ### Step 3: Set Up the Equation for C₂H₆ From the information given: \[ -85 = 2 \times 718 + 3 \times 218 - (6A + B) \] Simplifying this: \[ -85 = 1436 + 654 - (6A + B) \] \[ -85 = 2090 - (6A + B) \] Rearranging gives: \[ 6A + B = 2090 + 85 \] \[ 6A + B = 2175 \] (Equation 1) ### Step 4: Write the Enthalpy Change for C₃H₈ Similarly, for the formation of C₃H₈: \[ \Delta H_f^{\circ}(C_3H_8) = \Delta H_{sublimation} + \Delta H_{formation \, of \, H_2} - \text{(bond energies)} \] Where: - \(\Delta H_{sublimation} = 3 \times 718 \, \text{kJ/mol}\) - \(\Delta H_{formation \, of \, H_2} = 4 \times 218 \, \text{kJ/mol}\) - Bond energies: \(8A\) (for 8 C-H bonds) and \(2B\) (for 2 C-C bonds) ### Step 5: Set Up the Equation for C₃H₈ From the information given: \[ -104 = 3 \times 718 + 4 \times 218 - (8A + 2B) \] Simplifying this: \[ -104 = 2154 + 872 - (8A + 2B) \] \[ -104 = 3026 - (8A + 2B) \] Rearranging gives: \[ 8A + 2B = 3026 + 104 \] \[ 8A + 2B = 3130 \] (Equation 2) ### Step 6: Solve the System of Equations Now we have two equations: 1. \(6A + B = 2175\) 2. \(8A + 2B = 3130\) From Equation 1, we can express \(B\) in terms of \(A\): \[ B = 2175 - 6A \] Substituting \(B\) into Equation 2: \[ 8A + 2(2175 - 6A) = 3130 \] \[ 8A + 4350 - 12A = 3130 \] \[ -4A + 4350 = 3130 \] \[ -4A = 3130 - 4350 \] \[ -4A = -1220 \] \[ A = 305 \, \text{kJ/mol} \] Now substituting \(A\) back to find \(B\): \[ B = 2175 - 6(305) \] \[ B = 2175 - 1830 \] \[ B = 345 \, \text{kJ/mol} \] ### Final Values - \(A\) (C-H bond enthalpy) = 305 kJ/mol - \(B\) (C-C bond enthalpy) = 345 kJ/mol

To solve the problem, we need to calculate the bond enthalpies of C-H and C-C bonds using the given data. Here’s a step-by-step breakdown of the solution: ### Step 1: Understand the Formation Reactions The formation of ethane (C₂H₆) can be represented as: \[ 2C(s) + 3H_2(g) \rightarrow C_2H_6(g) \] The formation of propane (C₃H₈) can be represented as: \[ 3C(s) + 4H_2(g) \rightarrow C_3H_8(g) \] ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part-4 : Comprehension|5 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 Part-1 :(previous years)|8 Videos
  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-2 Part-2: Single and double value integer type|14 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

Given C_(2)H_(2)(g)+H_(2)(g)rarrC_(2)H_(4)(g): DeltaH^(@)=-175 " kJ mol"^(-1) DeltaH_(f(C_(2)H_(4),g))^(@)=50 " kJ mol"^(-1), DeltaH_(f(H_(2)O,l))^(@)=-280 " kJ mol"^(-1), DeltaH_(f(CO_(2)g))^(@)=-390 " kJ mol"^(-1) If DeltaH^(@) is enthalpy of combustion (in kJ "mol"^(-1) ) of C_(2)H_(2) (g), then calculate the value of |(DeltaH^(@))/(257)|

Calculate the resonance energy of toluene (use Kekule structure from the following data C_(7)H_(8)(l) +9O_(2)(g) rarr 7CO_(2)(g) +4H_(2)O(l)+ DeltaH, DeltaH^(Theta) =- 3910 kJ mol^(-1) C_(7)H_(8)(l) rarr C_(7)H_(8)(g), DeltaH^(Theta) = 38.1 kJ mol^(-1) Delta_(f)H^(Theta) (water) =- 285.8 kJ mol^(-1) Delta_(f)H^(Theta) [CO_(2)(g)] =- 393.5 kJ mol^(-1) Heat of atomisation of H_(2)(g) = 436.0 kJ mol^(-1) Heat of sublimation of C(g) = 715.0 kJ mol^(-1) Bond energies of C-H, C-C , and C=C are 413.0, 345.6 , and 610.0 kJ mol^(-1) .

Find DeltaH of the process NaOH(s) rarr NaOH(g) Given: Delta_(diss)H^(Theta)of O_(2) = 151 kJ mol^(-1) Delta_(diss)H^(Theta) of H_(2) = 435 kJ mol^(-1) Delta_(diss)H^(Theta) of O-H = 465 kJ mol^(-1) Delta_(diss)H^(Theta) of Na -O = 255 kJ mol^(-1) Delta_(soln)H^(Theta)of NaOH = - 46 kJ mol^(-1) Delta_(f)H^(Theta) of NaOH(s) =- 427 kJ mol^(-1) Delta_("sub")H^(Theta) of Na(s) = 109 kJ mol^(-1)

Calculate the equilibrium constant for the following reaction at 298 K and 1 atm pressure.C(graphite)+H2O(l)=CO(g)+H2(g) Given : 'Delta_f H^@ , [H_2O (l)] = -286.0 kJ mol^(-1) , Delta_f H^@ [ CO (g)] = - 110.5 kJ mol^(-1) , DeltaS^@ at 298 K for the reaction =252.6 J k^(-1) mol^(-1) . Gas constant R = 8.31 Jk^(-1) mol^(-1) .

Calculate the enthalpy change for the process C Cl_(4)(g) rarr C(g)+4Cl(g) and calculate bond enthalpy of C-Cl in C Cl_(4)(g) . Delta_(vap)H^(Θ)(C Cl_(4))=30.5 kJ mol^(-1) Delta_(f)H^(Θ)(C Cl_(4))=-135.5 kJ mol^(-1) Delta_(a)H^(Θ)(C )=715.0 kJ mol^(-1) , where Delta_(a)H^(Θ) is enthalpy of atomisation Delta_(a)H^(Θ)(Cl_(2))=242 kJ mol^(-1)

The DeltaH_(f)^(0)(KF,s) is -563 kJ mol^(-1) . The ionization enthalpy of K(g) is 419 kJ mol^(-1) . and the enthalpy of sublimation of potassium is 88 kJ mol^(-1) . The electron affinity of F(g) is 322 kJ mol^(-1) and F-F bond enthalpy is 158 kJ mol^(_1) . Calculate the lattice enthalpy of KF(s) . The given data are as follows: (i) K(s)+1//2F_(2)(g)rarrKF(s)" "DeltaH_(f)^(0)= -563 kJ mol^(-1) (ii) K(g)rarrK^(+)(g)+e^(-)" "Delta_("Ioniz")^(0)=419 kJ mol^(-1) (iii) K(s)rarrK(g)" "DeltaH_("sub")^(0)=88kJ mol^(-1) (iv) F(g)+e^(-)rarrF^(-)(g)" "DeltaH_(eg)^(0)= -322 kJ mol^(-1) (v) F_(2)(g)rarr2F(s)" "DeltaH_("diss")^(0)= 158 kJ mol^(-1) (vi) K^(+)(g)+F^(-)(g)rarrKF(s)" " DeltaH_(L)^(0)=?

When enthyne is passed through a red hot tube, then formation of benzene takes place: Delta_(f)H_((C_(2)H_(2))(g))^(Theta) = 230 kJ mol^(-1) Delta_(f)H_((C_(6)H_(6))(g))^(Theta) = 85kJ mol^(-1) Calculate the standard heat of trimerisation of ethyne to benzene: 3C_(2)H_(2)(g) rarr C_(6)H_(6)(g)

Given: The heat of sublimation of K(s) is 89 kJ mol^(-1) . K(g) rarrK^(o+)(g)+e^(-), DeltaH^(Theta) = 419 kJ F_(2)(g) rarr 2F(g),DeltaH^(Theta) = 155 kJ The lattice enegry of KF(s) is -813kJ mol^(-1) , the heat of formation of KF(s) is -563 kJ mol^(-1) . the E_(A) of F(g) is

The following are heats of reactions : (A) DeltaH_(f)^(@) of H_(2)O(l)=-68.3kcal mol^(-1) (B) DeltaH_(comb)^(@) of C_(2)H_(2)=-337.2 kcal mol^(-1) (C) DeltaH_(comb)^(@) of C_(2)H_(4)=-363.7Kal mol_(-1) Then the heat charge for the reaction :- C_(2)H_(2)+H_(2)rarrC_(2)H_(4)

NH_(3)(g) + 3Cl_(2)(g) rarr NCl_(3)(g) + 3HCl(g), " "DeltaH_(1) N_(2)(g) + 3H_(2)(g) rarr 2NH_(3)(g), " "Delta H_(2) H_(2)(g) + Cl_(2)(g) rarr 2HCl(g), " "Delta H_(3) The heat of formation of NCl3(g) in the terms of DeltaH_(1), DeltaH_2 and DeltaH_(3) is :